mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 07:09:12 +08:00
988 lines
29 KiB
C++
988 lines
29 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace cv::superres;
|
|
using namespace cv::superres::detail;
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// CpuOpticalFlow
|
|
|
|
namespace
|
|
{
|
|
class CpuOpticalFlow : public DenseOpticalFlowExt
|
|
{
|
|
public:
|
|
explicit CpuOpticalFlow(int work_type);
|
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
virtual void impl(const Mat& input0, const Mat& input1, OutputArray dst) = 0;
|
|
|
|
private:
|
|
int work_type_;
|
|
Mat buf_[6];
|
|
Mat flow_;
|
|
Mat flows_[2];
|
|
};
|
|
|
|
CpuOpticalFlow::CpuOpticalFlow(int work_type) : work_type_(work_type)
|
|
{
|
|
}
|
|
|
|
void CpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
|
|
{
|
|
Mat frame0 = arrGetMat(_frame0, buf_[0]);
|
|
Mat frame1 = arrGetMat(_frame1, buf_[1]);
|
|
|
|
CV_Assert( frame1.type() == frame0.type() );
|
|
CV_Assert( frame1.size() == frame0.size() );
|
|
|
|
Mat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
|
|
Mat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
|
|
|
|
if (!_flow2.needed() && _flow1.kind() < _InputArray::OPENGL_BUFFER)
|
|
{
|
|
impl(input0, input1, _flow1);
|
|
return;
|
|
}
|
|
|
|
impl(input0, input1, flow_);
|
|
|
|
if (!_flow2.needed())
|
|
{
|
|
arrCopy(flow_, _flow1);
|
|
}
|
|
else
|
|
{
|
|
split(flow_, flows_);
|
|
|
|
arrCopy(flows_[0], _flow1);
|
|
arrCopy(flows_[1], _flow2);
|
|
}
|
|
}
|
|
|
|
void CpuOpticalFlow::collectGarbage()
|
|
{
|
|
for (int i = 0; i < 6; ++i)
|
|
buf_[i].release();
|
|
flow_.release();
|
|
flows_[0].release();
|
|
flows_[1].release();
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Farneback
|
|
|
|
namespace
|
|
{
|
|
class Farneback : public CpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
Farneback();
|
|
|
|
protected:
|
|
void impl(const Mat& input0, const Mat& input1, OutputArray dst);
|
|
|
|
private:
|
|
double pyrScale_;
|
|
int numLevels_;
|
|
int winSize_;
|
|
int numIters_;
|
|
int polyN_;
|
|
double polySigma_;
|
|
int flags_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(Farneback, "DenseOpticalFlowExt.Farneback",
|
|
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_);
|
|
obj.info()->addParam(obj, "numLevels", obj.numLevels_);
|
|
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
|
obj.info()->addParam(obj, "numIters", obj.numIters_);
|
|
obj.info()->addParam(obj, "polyN", obj.polyN_);
|
|
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
|
|
obj.info()->addParam(obj, "flags", obj.flags_));
|
|
|
|
Farneback::Farneback() : CpuOpticalFlow(CV_8UC1)
|
|
{
|
|
pyrScale_ = 0.5;
|
|
numLevels_ = 5;
|
|
winSize_ = 13;
|
|
numIters_ = 10;
|
|
polyN_ = 5;
|
|
polySigma_ = 1.1;
|
|
flags_ = 0;
|
|
}
|
|
|
|
void Farneback::impl(const Mat& input0, const Mat& input1, OutputArray dst)
|
|
{
|
|
calcOpticalFlowFarneback(input0, input1, dst, pyrScale_, numLevels_, winSize_, numIters_, polyN_, polySigma_, flags_);
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback()
|
|
{
|
|
return new Farneback;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Simple
|
|
|
|
namespace
|
|
{
|
|
class Simple : public CpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
Simple();
|
|
|
|
protected:
|
|
void impl(const Mat& input0, const Mat& input1, OutputArray dst);
|
|
|
|
private:
|
|
int layers_;
|
|
int averagingBlockSize_;
|
|
int maxFlow_;
|
|
double sigmaDist_;
|
|
double sigmaColor_;
|
|
int postProcessWindow_;
|
|
double sigmaDistFix_;
|
|
double sigmaColorFix_;
|
|
double occThr_;
|
|
int upscaleAveragingRadius_;
|
|
double upscaleSigmaDist_;
|
|
double upscaleSigmaColor_;
|
|
double speedUpThr_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(Simple, "DenseOpticalFlowExt.Simple",
|
|
obj.info()->addParam(obj, "layers", obj.layers_);
|
|
obj.info()->addParam(obj, "averagingBlockSize", obj.averagingBlockSize_);
|
|
obj.info()->addParam(obj, "maxFlow", obj.maxFlow_);
|
|
obj.info()->addParam(obj, "sigmaDist", obj.sigmaDist_);
|
|
obj.info()->addParam(obj, "sigmaColor", obj.sigmaColor_);
|
|
obj.info()->addParam(obj, "postProcessWindow", obj.postProcessWindow_);
|
|
obj.info()->addParam(obj, "sigmaDistFix", obj.sigmaDistFix_);
|
|
obj.info()->addParam(obj, "sigmaColorFix", obj.sigmaColorFix_);
|
|
obj.info()->addParam(obj, "occThr", obj.occThr_);
|
|
obj.info()->addParam(obj, "upscaleAveragingRadius", obj.upscaleAveragingRadius_);
|
|
obj.info()->addParam(obj, "upscaleSigmaDist", obj.upscaleSigmaDist_);
|
|
obj.info()->addParam(obj, "upscaleSigmaColor", obj.upscaleSigmaColor_);
|
|
obj.info()->addParam(obj, "speedUpThr", obj.speedUpThr_));
|
|
|
|
Simple::Simple() : CpuOpticalFlow(CV_8UC3)
|
|
{
|
|
layers_ = 3;
|
|
averagingBlockSize_ = 2;
|
|
maxFlow_ = 4;
|
|
sigmaDist_ = 4.1;
|
|
sigmaColor_ = 25.5;
|
|
postProcessWindow_ = 18;
|
|
sigmaDistFix_ = 55.0;
|
|
sigmaColorFix_ = 25.5;
|
|
occThr_ = 0.35;
|
|
upscaleAveragingRadius_ = 18;
|
|
upscaleSigmaDist_ = 55.0;
|
|
upscaleSigmaColor_ = 25.5;
|
|
speedUpThr_ = 10;
|
|
}
|
|
|
|
void Simple::impl(const Mat& _input0, const Mat& _input1, OutputArray dst)
|
|
{
|
|
Mat input0 = _input0;
|
|
Mat input1 = _input1;
|
|
calcOpticalFlowSF(input0, input1, dst.getMatRef(),
|
|
layers_,
|
|
averagingBlockSize_,
|
|
maxFlow_,
|
|
sigmaDist_,
|
|
sigmaColor_,
|
|
postProcessWindow_,
|
|
sigmaDistFix_,
|
|
sigmaColorFix_,
|
|
occThr_,
|
|
upscaleAveragingRadius_,
|
|
upscaleSigmaDist_,
|
|
upscaleSigmaColor_,
|
|
speedUpThr_);
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Simple()
|
|
{
|
|
return new Simple;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// DualTVL1
|
|
|
|
namespace
|
|
{
|
|
class DualTVL1 : public CpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
DualTVL1();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const Mat& input0, const Mat& input1, OutputArray dst);
|
|
|
|
private:
|
|
double tau_;
|
|
double lambda_;
|
|
double theta_;
|
|
int nscales_;
|
|
int warps_;
|
|
double epsilon_;
|
|
int iterations_;
|
|
bool useInitialFlow_;
|
|
|
|
Ptr<DenseOpticalFlow> alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(DualTVL1, "DenseOpticalFlowExt.DualTVL1",
|
|
obj.info()->addParam(obj, "tau", obj.tau_);
|
|
obj.info()->addParam(obj, "lambda", obj.lambda_);
|
|
obj.info()->addParam(obj, "theta", obj.theta_);
|
|
obj.info()->addParam(obj, "nscales", obj.nscales_);
|
|
obj.info()->addParam(obj, "warps", obj.warps_);
|
|
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
|
|
obj.info()->addParam(obj, "iterations", obj.iterations_);
|
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
|
|
|
|
DualTVL1::DualTVL1() : CpuOpticalFlow(CV_8UC1)
|
|
{
|
|
alg_ = cv::createOptFlow_DualTVL1();
|
|
tau_ = alg_->getDouble("tau");
|
|
lambda_ = alg_->getDouble("lambda");
|
|
theta_ = alg_->getDouble("theta");
|
|
nscales_ = alg_->getInt("nscales");
|
|
warps_ = alg_->getInt("warps");
|
|
epsilon_ = alg_->getDouble("epsilon");
|
|
iterations_ = alg_->getInt("iterations");
|
|
useInitialFlow_ = alg_->getBool("useInitialFlow");
|
|
}
|
|
|
|
void DualTVL1::impl(const Mat& input0, const Mat& input1, OutputArray dst)
|
|
{
|
|
alg_->set("tau", tau_);
|
|
alg_->set("lambda", lambda_);
|
|
alg_->set("theta", theta_);
|
|
alg_->set("nscales", nscales_);
|
|
alg_->set("warps", warps_);
|
|
alg_->set("epsilon", epsilon_);
|
|
alg_->set("iterations", iterations_);
|
|
alg_->set("useInitialFlow", useInitialFlow_);
|
|
|
|
alg_->calc(input0, input1, dst);
|
|
}
|
|
|
|
void DualTVL1::collectGarbage()
|
|
{
|
|
alg_->collectGarbage();
|
|
CpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1()
|
|
{
|
|
return new DualTVL1;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// GpuOpticalFlow
|
|
|
|
#ifndef HAVE_OPENCV_GPU
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_GPU()
|
|
{
|
|
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<DenseOpticalFlowExt>();
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_GPU()
|
|
{
|
|
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<DenseOpticalFlowExt>();
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Brox_GPU()
|
|
{
|
|
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<DenseOpticalFlowExt>();
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_GPU()
|
|
{
|
|
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<DenseOpticalFlowExt>();
|
|
}
|
|
|
|
#else // HAVE_OPENCV_GPU
|
|
|
|
namespace
|
|
{
|
|
class GpuOpticalFlow : public DenseOpticalFlowExt
|
|
{
|
|
public:
|
|
explicit GpuOpticalFlow(int work_type);
|
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
virtual void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) = 0;
|
|
|
|
private:
|
|
int work_type_;
|
|
GpuMat buf_[6];
|
|
GpuMat u_, v_, flow_;
|
|
};
|
|
|
|
GpuOpticalFlow::GpuOpticalFlow(int work_type) : work_type_(work_type)
|
|
{
|
|
}
|
|
|
|
void GpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
|
|
{
|
|
GpuMat frame0 = arrGetGpuMat(_frame0, buf_[0]);
|
|
GpuMat frame1 = arrGetGpuMat(_frame1, buf_[1]);
|
|
|
|
CV_Assert( frame1.type() == frame0.type() );
|
|
CV_Assert( frame1.size() == frame0.size() );
|
|
|
|
GpuMat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
|
|
GpuMat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
|
|
|
|
if (_flow2.needed() && _flow1.kind() == _InputArray::GPU_MAT && _flow2.kind() == _InputArray::GPU_MAT)
|
|
{
|
|
impl(input0, input1, _flow1.getGpuMatRef(), _flow2.getGpuMatRef());
|
|
return;
|
|
}
|
|
|
|
impl(input0, input1, u_, v_);
|
|
|
|
if (_flow2.needed())
|
|
{
|
|
arrCopy(u_, _flow1);
|
|
arrCopy(v_, _flow2);
|
|
}
|
|
else
|
|
{
|
|
GpuMat src[] = {u_, v_};
|
|
merge(src, 2, flow_);
|
|
arrCopy(flow_, _flow1);
|
|
}
|
|
}
|
|
|
|
void GpuOpticalFlow::collectGarbage()
|
|
{
|
|
for (int i = 0; i < 6; ++i)
|
|
buf_[i].release();
|
|
u_.release();
|
|
v_.release();
|
|
flow_.release();
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Brox_GPU
|
|
|
|
namespace
|
|
{
|
|
class Brox_GPU : public GpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
Brox_GPU();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
double alpha_;
|
|
double gamma_;
|
|
double scaleFactor_;
|
|
int innerIterations_;
|
|
int outerIterations_;
|
|
int solverIterations_;
|
|
|
|
BroxOpticalFlow alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(Brox_GPU, "DenseOpticalFlowExt.Brox_GPU",
|
|
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Flow smoothness");
|
|
obj.info()->addParam(obj, "gamma", obj.gamma_, false, 0, 0, "Gradient constancy importance");
|
|
obj.info()->addParam(obj, "scaleFactor", obj.scaleFactor_, false, 0, 0, "Pyramid scale factor");
|
|
obj.info()->addParam(obj, "innerIterations", obj.innerIterations_, false, 0, 0, "Number of lagged non-linearity iterations (inner loop)");
|
|
obj.info()->addParam(obj, "outerIterations", obj.outerIterations_, false, 0, 0, "Number of warping iterations (number of pyramid levels)");
|
|
obj.info()->addParam(obj, "solverIterations", obj.solverIterations_, false, 0, 0, "Number of linear system solver iterations"));
|
|
|
|
Brox_GPU::Brox_GPU() : GpuOpticalFlow(CV_32FC1), alg_(0.197f, 50.0f, 0.8f, 10, 77, 10)
|
|
{
|
|
alpha_ = alg_.alpha;
|
|
gamma_ = alg_.gamma;
|
|
scaleFactor_ = alg_.scale_factor;
|
|
innerIterations_ = alg_.inner_iterations;
|
|
outerIterations_ = alg_.outer_iterations;
|
|
solverIterations_ = alg_.solver_iterations;
|
|
}
|
|
|
|
void Brox_GPU::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_.alpha = static_cast<float>(alpha_);
|
|
alg_.gamma = static_cast<float>(gamma_);
|
|
alg_.scale_factor = static_cast<float>(scaleFactor_);
|
|
alg_.inner_iterations = innerIterations_;
|
|
alg_.outer_iterations = outerIterations_;
|
|
alg_.solver_iterations = solverIterations_;
|
|
|
|
alg_(input0, input1, dst1, dst2);
|
|
}
|
|
|
|
void Brox_GPU::collectGarbage()
|
|
{
|
|
alg_.buf.release();
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Brox_GPU()
|
|
{
|
|
return new Brox_GPU;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// PyrLK_GPU
|
|
|
|
namespace
|
|
{
|
|
class PyrLK_GPU : public GpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
PyrLK_GPU();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
int winSize_;
|
|
int maxLevel_;
|
|
int iterations_;
|
|
|
|
PyrLKOpticalFlow alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(PyrLK_GPU, "DenseOpticalFlowExt.PyrLK_GPU",
|
|
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
|
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
|
|
obj.info()->addParam(obj, "iterations", obj.iterations_));
|
|
|
|
PyrLK_GPU::PyrLK_GPU() : GpuOpticalFlow(CV_8UC1)
|
|
{
|
|
winSize_ = alg_.winSize.width;
|
|
maxLevel_ = alg_.maxLevel;
|
|
iterations_ = alg_.iters;
|
|
}
|
|
|
|
void PyrLK_GPU::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_.winSize.width = winSize_;
|
|
alg_.winSize.height = winSize_;
|
|
alg_.maxLevel = maxLevel_;
|
|
alg_.iters = iterations_;
|
|
|
|
alg_.dense(input0, input1, dst1, dst2);
|
|
}
|
|
|
|
void PyrLK_GPU::collectGarbage()
|
|
{
|
|
alg_.releaseMemory();
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_GPU()
|
|
{
|
|
return new PyrLK_GPU;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Farneback_GPU
|
|
|
|
namespace
|
|
{
|
|
class Farneback_GPU : public GpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
Farneback_GPU();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
double pyrScale_;
|
|
int numLevels_;
|
|
int winSize_;
|
|
int numIters_;
|
|
int polyN_;
|
|
double polySigma_;
|
|
int flags_;
|
|
|
|
FarnebackOpticalFlow alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(Farneback_GPU, "DenseOpticalFlowExt.Farneback_GPU",
|
|
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_);
|
|
obj.info()->addParam(obj, "numLevels", obj.numLevels_);
|
|
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
|
obj.info()->addParam(obj, "numIters", obj.numIters_);
|
|
obj.info()->addParam(obj, "polyN", obj.polyN_);
|
|
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
|
|
obj.info()->addParam(obj, "flags", obj.flags_));
|
|
|
|
Farneback_GPU::Farneback_GPU() : GpuOpticalFlow(CV_8UC1)
|
|
{
|
|
pyrScale_ = alg_.pyrScale;
|
|
numLevels_ = alg_.numLevels;
|
|
winSize_ = alg_.winSize;
|
|
numIters_ = alg_.numIters;
|
|
polyN_ = alg_.polyN;
|
|
polySigma_ = alg_.polySigma;
|
|
flags_ = alg_.flags;
|
|
}
|
|
|
|
void Farneback_GPU::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_.pyrScale = pyrScale_;
|
|
alg_.numLevels = numLevels_;
|
|
alg_.winSize = winSize_;
|
|
alg_.numIters = numIters_;
|
|
alg_.polyN = polyN_;
|
|
alg_.polySigma = polySigma_;
|
|
alg_.flags = flags_;
|
|
|
|
alg_(input0, input1, dst1, dst2);
|
|
}
|
|
|
|
void Farneback_GPU::collectGarbage()
|
|
{
|
|
alg_.releaseMemory();
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_GPU()
|
|
{
|
|
return new Farneback_GPU;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// DualTVL1_GPU
|
|
|
|
namespace
|
|
{
|
|
class DualTVL1_GPU : public GpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
DualTVL1_GPU();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
double tau_;
|
|
double lambda_;
|
|
double theta_;
|
|
int nscales_;
|
|
int warps_;
|
|
double epsilon_;
|
|
int iterations_;
|
|
bool useInitialFlow_;
|
|
|
|
OpticalFlowDual_TVL1_GPU alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(DualTVL1_GPU, "DenseOpticalFlowExt.DualTVL1_GPU",
|
|
obj.info()->addParam(obj, "tau", obj.tau_);
|
|
obj.info()->addParam(obj, "lambda", obj.lambda_);
|
|
obj.info()->addParam(obj, "theta", obj.theta_);
|
|
obj.info()->addParam(obj, "nscales", obj.nscales_);
|
|
obj.info()->addParam(obj, "warps", obj.warps_);
|
|
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
|
|
obj.info()->addParam(obj, "iterations", obj.iterations_);
|
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
|
|
|
|
DualTVL1_GPU::DualTVL1_GPU() : GpuOpticalFlow(CV_8UC1)
|
|
{
|
|
tau_ = alg_.tau;
|
|
lambda_ = alg_.lambda;
|
|
theta_ = alg_.theta;
|
|
nscales_ = alg_.nscales;
|
|
warps_ = alg_.warps;
|
|
epsilon_ = alg_.epsilon;
|
|
iterations_ = alg_.iterations;
|
|
useInitialFlow_ = alg_.useInitialFlow;
|
|
}
|
|
|
|
void DualTVL1_GPU::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_.tau = tau_;
|
|
alg_.lambda = lambda_;
|
|
alg_.theta = theta_;
|
|
alg_.nscales = nscales_;
|
|
alg_.warps = warps_;
|
|
alg_.epsilon = epsilon_;
|
|
alg_.iterations = iterations_;
|
|
alg_.useInitialFlow = useInitialFlow_;
|
|
|
|
alg_(input0, input1, dst1, dst2);
|
|
}
|
|
|
|
void DualTVL1_GPU::collectGarbage()
|
|
{
|
|
alg_.collectGarbage();
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_GPU()
|
|
{
|
|
return new DualTVL1_GPU;
|
|
}
|
|
|
|
#endif // HAVE_OPENCV_GPU
|
|
#ifdef HAVE_OPENCV_OCL
|
|
|
|
namespace
|
|
{
|
|
class oclOpticalFlow : public DenseOpticalFlowExt
|
|
{
|
|
public:
|
|
explicit oclOpticalFlow(int work_type);
|
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
virtual void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) = 0;
|
|
|
|
private:
|
|
int work_type_;
|
|
cv::ocl::oclMat buf_[6];
|
|
cv::ocl::oclMat u_, v_, flow_;
|
|
};
|
|
|
|
oclOpticalFlow::oclOpticalFlow(int work_type) : work_type_(work_type)
|
|
{
|
|
}
|
|
|
|
void oclOpticalFlow::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
|
{
|
|
ocl::oclMat& _frame0 = ocl::getOclMatRef(frame0);
|
|
ocl::oclMat& _frame1 = ocl::getOclMatRef(frame1);
|
|
ocl::oclMat& _flow1 = ocl::getOclMatRef(flow1);
|
|
ocl::oclMat& _flow2 = ocl::getOclMatRef(flow2);
|
|
|
|
CV_Assert( _frame1.type() == _frame0.type() );
|
|
CV_Assert( _frame1.size() == _frame0.size() );
|
|
|
|
cv::ocl::oclMat input0_ = convertToType(_frame0, work_type_, buf_[2], buf_[3]);
|
|
cv::ocl::oclMat input1_ = convertToType(_frame1, work_type_, buf_[4], buf_[5]);
|
|
|
|
impl(input0_, input1_, u_, v_);//go to tvl1 algorithm
|
|
|
|
u_.copyTo(_flow1);
|
|
v_.copyTo(_flow2);
|
|
}
|
|
|
|
void oclOpticalFlow::collectGarbage()
|
|
{
|
|
for (int i = 0; i < 6; ++i)
|
|
buf_[i].release();
|
|
u_.release();
|
|
v_.release();
|
|
flow_.release();
|
|
}
|
|
}
|
|
///////////////////////////////////////////////////////////////////
|
|
// PyrLK_OCL
|
|
|
|
namespace
|
|
{
|
|
class PyrLK_OCL : public oclOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
PyrLK_OCL();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const ocl::oclMat& input0, const ocl::oclMat& input1, ocl::oclMat& dst1, ocl::oclMat& dst2);
|
|
|
|
private:
|
|
int winSize_;
|
|
int maxLevel_;
|
|
int iterations_;
|
|
|
|
ocl::PyrLKOpticalFlow alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(PyrLK_OCL, "DenseOpticalFlowExt.PyrLK_OCL",
|
|
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
|
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
|
|
obj.info()->addParam(obj, "iterations", obj.iterations_));
|
|
|
|
PyrLK_OCL::PyrLK_OCL() : oclOpticalFlow(CV_8UC1)
|
|
{
|
|
winSize_ = alg_.winSize.width;
|
|
maxLevel_ = alg_.maxLevel;
|
|
iterations_ = alg_.iters;
|
|
}
|
|
|
|
void PyrLK_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
|
|
{
|
|
alg_.winSize.width = winSize_;
|
|
alg_.winSize.height = winSize_;
|
|
alg_.maxLevel = maxLevel_;
|
|
alg_.iters = iterations_;
|
|
|
|
alg_.dense(input0, input1, dst1, dst2);
|
|
}
|
|
|
|
void PyrLK_OCL::collectGarbage()
|
|
{
|
|
alg_.releaseMemory();
|
|
oclOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_OCL()
|
|
{
|
|
return new PyrLK_OCL;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// DualTVL1_OCL
|
|
|
|
namespace
|
|
{
|
|
class DualTVL1_OCL : public oclOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
DualTVL1_OCL();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2);
|
|
|
|
private:
|
|
double tau_;
|
|
double lambda_;
|
|
double theta_;
|
|
int nscales_;
|
|
int warps_;
|
|
double epsilon_;
|
|
int iterations_;
|
|
bool useInitialFlow_;
|
|
|
|
ocl::OpticalFlowDual_TVL1_OCL alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(DualTVL1_OCL, "DenseOpticalFlowExt.DualTVL1_OCL",
|
|
obj.info()->addParam(obj, "tau", obj.tau_);
|
|
obj.info()->addParam(obj, "lambda", obj.lambda_);
|
|
obj.info()->addParam(obj, "theta", obj.theta_);
|
|
obj.info()->addParam(obj, "nscales", obj.nscales_);
|
|
obj.info()->addParam(obj, "warps", obj.warps_);
|
|
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
|
|
obj.info()->addParam(obj, "iterations", obj.iterations_);
|
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
|
|
|
|
DualTVL1_OCL::DualTVL1_OCL() : oclOpticalFlow(CV_8UC1)
|
|
{
|
|
tau_ = alg_.tau;
|
|
lambda_ = alg_.lambda;
|
|
theta_ = alg_.theta;
|
|
nscales_ = alg_.nscales;
|
|
warps_ = alg_.warps;
|
|
epsilon_ = alg_.epsilon;
|
|
iterations_ = alg_.iterations;
|
|
useInitialFlow_ = alg_.useInitialFlow;
|
|
}
|
|
|
|
void DualTVL1_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
|
|
{
|
|
alg_.tau = tau_;
|
|
alg_.lambda = lambda_;
|
|
alg_.theta = theta_;
|
|
alg_.nscales = nscales_;
|
|
alg_.warps = warps_;
|
|
alg_.epsilon = epsilon_;
|
|
alg_.iterations = iterations_;
|
|
alg_.useInitialFlow = useInitialFlow_;
|
|
|
|
alg_(input0, input1, dst1, dst2);
|
|
|
|
}
|
|
|
|
void DualTVL1_OCL::collectGarbage()
|
|
{
|
|
alg_.collectGarbage();
|
|
oclOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_OCL()
|
|
{
|
|
return new DualTVL1_OCL;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// FarneBack
|
|
|
|
namespace
|
|
{
|
|
class FarneBack_OCL : public oclOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
FarneBack_OCL();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2);
|
|
|
|
private:
|
|
double pyrScale_;
|
|
int numLevels_;
|
|
int winSize_;
|
|
int numIters_;
|
|
int polyN_;
|
|
double polySigma_;
|
|
int flags_;
|
|
|
|
ocl::FarnebackOpticalFlow alg_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(FarneBack_OCL, "DenseOpticalFlowExt.FarneBack_OCL",
|
|
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_);
|
|
obj.info()->addParam(obj, "numLevels", obj.numLevels_);
|
|
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
|
obj.info()->addParam(obj, "numIters", obj.numIters_);
|
|
obj.info()->addParam(obj, "polyN", obj.polyN_);
|
|
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
|
|
obj.info()->addParam(obj, "flags", obj.flags_));
|
|
|
|
FarneBack_OCL::FarneBack_OCL() : oclOpticalFlow(CV_8UC1)
|
|
{
|
|
pyrScale_ = alg_.pyrScale;
|
|
numLevels_ = alg_.numLevels;
|
|
winSize_ = alg_.winSize;
|
|
numIters_ = alg_.numIters;
|
|
polyN_ = alg_.polyN;
|
|
polySigma_ = alg_.polySigma;
|
|
flags_ = alg_.flags;
|
|
}
|
|
|
|
void FarneBack_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
|
|
{
|
|
alg_.pyrScale = pyrScale_;
|
|
alg_.numLevels = numLevels_;
|
|
alg_.winSize = winSize_;
|
|
alg_.numIters = numIters_;
|
|
alg_.polyN = polyN_;
|
|
alg_.polySigma = polySigma_;
|
|
alg_.flags = flags_;
|
|
|
|
alg_(input0, input1, dst1, dst2);
|
|
}
|
|
|
|
void FarneBack_OCL::collectGarbage()
|
|
{
|
|
alg_.releaseMemory();
|
|
oclOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_OCL()
|
|
{
|
|
return new FarneBack_OCL;
|
|
}
|
|
|
|
#endif
|