opencv/modules/gpu/src/calib3d.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

295 lines
12 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
void cv::gpu::transformPoints(const GpuMat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::solvePnPRansac(const Mat&, const Mat&, const Mat&, const Mat&, Mat&, Mat&, bool, int, float, int, std::vector<int>*) { throw_nogpu(); }
#else
namespace cv { namespace gpu { namespace device
{
namespace transform_points
{
void call(const PtrStepSz<float3> src, const float* rot, const float* transl, PtrStepSz<float3> dst, cudaStream_t stream);
}
namespace project_points
{
void call(const PtrStepSz<float3> src, const float* rot, const float* transl, const float* proj, PtrStepSz<float2> dst, cudaStream_t stream);
}
namespace solve_pnp_ransac
{
int maxNumIters();
void computeHypothesisScores(
const int num_hypotheses, const int num_points, const float* rot_matrices,
const float3* transl_vectors, const float3* object, const float2* image,
const float dist_threshold, int* hypothesis_scores);
}
}}}
using namespace ::cv::gpu::device;
namespace
{
void transformPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3);
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F);
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F);
// Convert rotation vector into matrix
Mat rot;
Rodrigues(rvec, rot);
dst.create(src.size(), src.type());
transform_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), dst, stream);
}
}
void cv::gpu::transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream)
{
transformPointsCaller(src, rvec, tvec, dst, StreamAccessor::getStream(stream));
}
namespace
{
void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3);
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F);
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F);
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F);
CV_Assert(dist_coef.empty()); // Undistortion isn't supported
// Convert rotation vector into matrix
Mat rot;
Rodrigues(rvec, rot);
dst.create(src.size(), CV_32FC2);
project_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), camera_mat.ptr<float>(), dst,stream);
}
}
void cv::gpu::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream)
{
projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream));
}
namespace
{
// Selects subset_size random different points from [0, num_points - 1] range
void selectRandom(int subset_size, int num_points, std::vector<int>& subset)
{
subset.resize(subset_size);
for (int i = 0; i < subset_size; ++i)
{
bool was;
do
{
subset[i] = rand() % num_points;
was = false;
for (int j = 0; j < i; ++j)
if (subset[j] == subset[i])
{
was = true;
break;
}
} while (was);
}
}
// Computes rotation, translation pair for small subsets if the input data
class TransformHypothesesGenerator
{
public:
TransformHypothesesGenerator(const Mat& object_, const Mat& image_, const Mat& dist_coef_,
const Mat& camera_mat_, int num_points_, int subset_size_,
Mat rot_matrices_, Mat transl_vectors_)
: object(&object_), image(&image_), dist_coef(&dist_coef_), camera_mat(&camera_mat_),
num_points(num_points_), subset_size(subset_size_), rot_matrices(rot_matrices_),
transl_vectors(transl_vectors_) {}
void operator()(const BlockedRange& range) const
{
// Input data for generation of the current hypothesis
std::vector<int> subset_indices(subset_size);
Mat_<Point3f> object_subset(1, subset_size);
Mat_<Point2f> image_subset(1, subset_size);
// Current hypothesis data
Mat rot_vec(1, 3, CV_64F);
Mat rot_mat(3, 3, CV_64F);
Mat transl_vec(1, 3, CV_64F);
for (int iter = range.begin(); iter < range.end(); ++iter)
{
selectRandom(subset_size, num_points, subset_indices);
for (int i = 0; i < subset_size; ++i)
{
object_subset(0, i) = object->at<Point3f>(subset_indices[i]);
image_subset(0, i) = image->at<Point2f>(subset_indices[i]);
}
solvePnP(object_subset, image_subset, *camera_mat, *dist_coef, rot_vec, transl_vec);
// Remember translation vector
Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3);
transl_vec = transl_vec.reshape(0, 1);
transl_vec.convertTo(transl_vec_, CV_32F);
// Remember rotation matrix
Rodrigues(rot_vec, rot_mat);
Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3);
rot_mat.convertTo(rot_mat_, CV_32F);
}
}
const Mat* object;
const Mat* image;
const Mat* dist_coef;
const Mat* camera_mat;
int num_points;
int subset_size;
// Hypotheses storage (global)
Mat rot_matrices;
Mat transl_vectors;
};
}
void cv::gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess,
int num_iters, float max_dist, int min_inlier_count,
std::vector<int>* inliers)
{
(void)min_inlier_count;
CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3);
CV_Assert(image.rows == 1 && image.cols > 0 && image.type() == CV_32FC2);
CV_Assert(object.cols == image.cols);
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F);
CV_Assert(!use_extrinsic_guess); // We don't support initial guess for now
CV_Assert(num_iters <= solve_pnp_ransac::maxNumIters());
const int subset_size = 4;
const int num_points = object.cols;
CV_Assert(num_points >= subset_size);
// Unapply distortion and intrinsic camera transformations
Mat eye_camera_mat = Mat::eye(3, 3, CV_32F);
Mat empty_dist_coef;
Mat image_normalized;
undistortPoints(image, image_normalized, camera_mat, dist_coef, Mat(), eye_camera_mat);
// Hypotheses storage (global)
Mat rot_matrices(1, num_iters * 9, CV_32F);
Mat transl_vectors(1, num_iters * 3, CV_32F);
// Generate set of hypotheses using small subsets of the input data
TransformHypothesesGenerator body(object, image_normalized, empty_dist_coef, eye_camera_mat,
num_points, subset_size, rot_matrices, transl_vectors);
parallel_for(BlockedRange(0, num_iters), body);
// Compute scores (i.e. number of inliers) for each hypothesis
GpuMat d_object(object);
GpuMat d_image_normalized(image_normalized);
GpuMat d_hypothesis_scores(1, num_iters, CV_32S);
solve_pnp_ransac::computeHypothesisScores(
num_iters, num_points, rot_matrices.ptr<float>(), transl_vectors.ptr<float3>(),
d_object.ptr<float3>(), d_image_normalized.ptr<float2>(), max_dist * max_dist,
d_hypothesis_scores.ptr<int>());
// Find the best hypothesis index
Point best_idx;
double best_score;
minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx);
int num_inliers = static_cast<int>(best_score);
// Extract the best hypothesis data
Mat rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3);
Rodrigues(rot_mat, rvec);
rvec = rvec.reshape(0, 1);
tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone();
tvec = tvec.reshape(0, 1);
// Build vector of inlier indices
if (inliers != NULL)
{
inliers->clear();
inliers->reserve(num_inliers);
Point3f p, p_transf;
Point2f p_proj;
const float* rot = rot_mat.ptr<float>();
const float* transl = tvec.ptr<float>();
for (int i = 0; i < num_points; ++i)
{
p = object.at<Point3f>(0, i);
p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0];
p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1];
p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2];
p_proj.x = p_transf.x / p_transf.z;
p_proj.y = p_transf.y / p_transf.z;
if (norm(p_proj - image_normalized.at<Point2f>(0, i)) < max_dist)
inliers->push_back(i);
}
}
}
#endif