opencv/modules/gpu/src/stereobp.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

369 lines
15 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_nogpu(); }
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_nogpu(); }
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace device
{
namespace stereobp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
template<typename T, typename D>
void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
template<typename T>
void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
template <typename T>
void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
template <typename T>
void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
template <typename T>
void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
const PtrStepSz<short>& disp, cudaStream_t stream);
}
}}}
using namespace ::cv::gpu::device::stereobp;
namespace
{
const float DEFAULT_MAX_DATA_TERM = 10.0f;
const float DEFAULT_DATA_WEIGHT = 0.07f;
const float DEFAULT_MAX_DISC_TERM = 1.7f;
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
}
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
{
ndisp = width / 4;
if ((ndisp & 1) != 0)
ndisp++;
int mm = std::max(width, height);
iters = mm / 100 + 2;
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
if (levels == 0) levels++;
}
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_),
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP),
msg_type(msg_type_), datas(levels_)
{
}
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_),
max_data_term(max_data_term_), data_weight(data_weight_),
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
msg_type(msg_type_), datas(levels_)
{
}
namespace
{
class StereoBeliefPropagationImpl
{
public:
StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_,
GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_,
GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_,
std::vector<GpuMat>& datas_, GpuMat& out_)
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_),
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f)
{
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels);
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S);
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < std::numeric_limits<short>::max());
}
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
static const comp_data_t comp_data_callers[2][5] =
{
{0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
{0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
};
CV_Assert(left.size() == right.size() && left.type() == right.type());
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4);
rows = left.rows;
cols = left.cols;
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size);
init(stream);
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type);
comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream));
calcBP(disp, stream);
}
void operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
{
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0));
rows = data.rows / rthis.ndisp;
cols = data.cols;
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size);
init(stream);
datas[0] = data;
calcBP(disp, stream);
}
private:
void init(Stream& stream)
{
u.create(rows * rthis.ndisp, cols, rthis.msg_type);
d.create(rows * rthis.ndisp, cols, rthis.msg_type);
l.create(rows * rthis.ndisp, cols, rthis.msg_type);
r.create(rows * rthis.ndisp, cols, rthis.msg_type);
if (rthis.levels & 1)
{
//can clear less area
if (stream)
{
stream.enqueueMemSet(u, zero);
stream.enqueueMemSet(d, zero);
stream.enqueueMemSet(l, zero);
stream.enqueueMemSet(r, zero);
}
else
{
u.setTo(zero);
d.setTo(zero);
l.setTo(zero);
r.setTo(zero);
}
}
if (rthis.levels > 1)
{
int less_rows = (rows + 1) / 2;
int less_cols = (cols + 1) / 2;
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
if ((rthis.levels & 1) == 0)
{
if (stream)
{
stream.enqueueMemSet(u2, zero);
stream.enqueueMemSet(d2, zero);
stream.enqueueMemSet(l2, zero);
stream.enqueueMemSet(r2, zero);
}
else
{
u2.setTo(zero);
d2.setTo(zero);
l2.setTo(zero);
r2.setTo(zero);
}
}
}
load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump);
datas.resize(rthis.levels);
cols_all.resize(rthis.levels);
rows_all.resize(rthis.levels);
cols_all[0] = cols;
rows_all[0] = rows;
}
void calcBP(GpuMat& disp, Stream& stream)
{
typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
static const data_step_down_t data_step_down_callers[2] =
{
data_step_down_gpu<short>, data_step_down_gpu<float>
};
typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
static const level_up_messages_t level_up_messages_callers[2] =
{
level_up_messages_gpu<short>, level_up_messages_gpu<float>
};
typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
static const calc_all_iterations_t calc_all_iterations_callers[2] =
{
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
};
typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
static const output_t output_callers[2] =
{
output_gpu<short>, output_gpu<float>
};
const int funcIdx = rthis.msg_type == CV_32F;
cudaStream_t cudaStream = StreamAccessor::getStream(stream);
for (int i = 1; i < rthis.levels; ++i)
{
cols_all[i] = (cols_all[i-1] + 1) / 2;
rows_all[i] = (rows_all[i-1] + 1) / 2;
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type);
data_step_down_callers[funcIdx](cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], cudaStream);
}
PtrStepSzb mus[] = {u, u2};
PtrStepSzb mds[] = {d, d2};
PtrStepSzb mrs[] = {r, r2};
PtrStepSzb mls[] = {l, l2};
int mem_idx = (rthis.levels & 1) ? 0 : 1;
for (int i = rthis.levels - 1; i >= 0; --i)
{
// for lower level we have already computed messages by setting to zero
if (i != rthis.levels - 1)
level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream);
calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream);
mem_idx = (mem_idx + 1) & 1;
}
if (disp.empty())
disp.create(rows, cols, CV_16S);
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
if (stream)
stream.enqueueMemSet(out, zero);
else
out.setTo(zero);
output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream);
if (disp.type() != CV_16S)
{
if (stream)
stream.enqueueConvert(out, disp, disp.type());
else
out.convertTo(disp, disp.type());
}
}
StereoBeliefPropagation& rthis;
GpuMat& u;
GpuMat& d;
GpuMat& l;
GpuMat& r;
GpuMat& u2;
GpuMat& d2;
GpuMat& l2;
GpuMat& r2;
std::vector<GpuMat>& datas;
GpuMat& out;
const Scalar zero;
const float scale;
int rows, cols;
std::vector<int> cols_all, rows_all;
};
}
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(left, right, disp, stream);
}
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
{
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(data, disp, stream);
}
#endif /* !defined (HAVE_CUDA) */