opencv/samples/dnn/torch_enet.cpp
2017-07-18 18:49:14 +03:00

210 lines
6.1 KiB
C++

/*
Sample of using OpenCV dnn module with Torch ENet model.
*/
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace cv::dnn;
#include <fstream>
#include <iostream>
#include <cstdlib>
#include <sstream>
using namespace std;
const String keys =
"{help h || Sample app for loading ENet Torch model. "
"The model and class names list can be downloaded here: "
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }"
"{model m || path to Torch .net model file (model_best.net) }"
"{image i || path to image file }"
"{c_names c || path to file with classnames for channels (optional, categories.txt) }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
"{show s || whether to show all output channels or not}"
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
;
static void colorizeSegmentation(const Mat &score, Mat &segm,
Mat &legend, vector<String> &classNames, vector<Vec3b> &colors);
static vector<Vec3b> readColors(const String &filename, vector<String>& classNames);
int main(int argc, char **argv)
{
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
String modelFile = parser.get<String>("model");
String imageFile = parser.get<String>("image");
if (!parser.check())
{
parser.printErrors();
return 0;
}
String classNamesFile = parser.get<String>("c_names");
String resultFile = parser.get<String>("result");
//! [Read model and initialize network]
dnn::Net net = dnn::readNetFromTorch(modelFile);
//! [Prepare blob]
Mat img = imread(imageFile), input;
if (img.empty())
{
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
exit(-1);
}
Size origSize = img.size();
Size inputImgSize = cv::Size(1024, 512);
if (inputImgSize != origSize)
resize(img, img, inputImgSize); //Resize image to input size
Mat inputBlob = blobFromImage(img, 1./255); //Convert Mat to image batch
//! [Prepare blob]
//! [Set input blob]
net.setInput(inputBlob, ""); //set the network input
//! [Set input blob]
TickMeter tm;
String oBlob = net.getLayerNames().back();
if (!parser.get<String>("o_blob").empty())
{
oBlob = parser.get<String>("o_blob");
}
//! [Make forward pass]
tm.start();
Mat result = net.forward(oBlob);
tm.stop();
if (!resultFile.empty()) {
CV_Assert(result.isContinuous());
ofstream fout(resultFile.c_str(), ios::out | ios::binary);
fout.write((char*)result.data, result.total() * sizeof(float));
fout.close();
}
std::cout << "Output blob: " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << "\n";
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl;
if (parser.has("show"))
{
std::vector<String> classNames;
vector<cv::Vec3b> colors;
if(!classNamesFile.empty()) {
colors = readColors(classNamesFile, classNames);
}
Mat segm, legend;
colorizeSegmentation(result, segm, legend, classNames, colors);
Mat show;
addWeighted(img, 0.1, segm, 0.9, 0.0, show);
cv::resize(show, show, origSize, 0, 0, cv::INTER_NEAREST);
imshow("Result", show);
if(classNames.size())
imshow("Legend", legend);
waitKey();
}
return 0;
} //main
static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vector<String> &classNames, vector<Vec3b> &colors)
{
const int rows = score.size[2];
const int cols = score.size[3];
const int chns = score.size[1];
cv::Mat maxCl(rows, cols, CV_8UC1);
cv::Mat maxVal(rows, cols, CV_32FC1);
for (int ch = 0; ch < chns; ch++)
{
for (int row = 0; row < rows; row++)
{
const float *ptrScore = score.ptr<float>(0, ch, row);
uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
float *ptrMaxVal = maxVal.ptr<float>(row);
for (int col = 0; col < cols; col++)
{
if (ptrScore[col] > ptrMaxVal[col])
{
ptrMaxVal[col] = ptrScore[col];
ptrMaxCl[col] = (uchar)ch;
}
}
}
}
segm.create(rows, cols, CV_8UC3);
for (int row = 0; row < rows; row++)
{
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row);
for (int col = 0; col < cols; col++)
{
ptrSegm[col] = colors[ptrMaxCl[col]];
}
}
if (classNames.size() == colors.size())
{
int blockHeight = 30;
legend.create(blockHeight*(int)classNames.size(), 200, CV_8UC3);
for(int i = 0; i < (int)classNames.size(); i++)
{
cv::Mat block = legend.rowRange(i*blockHeight, (i+1)*blockHeight);
block = colors[i];
putText(block, classNames[i], Point(0, blockHeight/2), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
}
}
}
static vector<Vec3b> readColors(const String &filename, vector<String>& classNames)
{
vector<cv::Vec3b> colors;
classNames.clear();
ifstream fp(filename.c_str());
if (!fp.is_open())
{
cerr << "File with colors not found: " << filename << endl;
exit(-1);
}
string line;
while (!fp.eof())
{
getline(fp, line);
if (line.length())
{
stringstream ss(line);
string name; ss >> name;
int temp;
cv::Vec3b color;
ss >> temp; color[0] = (uchar)temp;
ss >> temp; color[1] = (uchar)temp;
ss >> temp; color[2] = (uchar)temp;
classNames.push_back(name);
colors.push_back(color);
}
}
fp.close();
return colors;
}