mirror of
https://github.com/opencv/opencv.git
synced 2025-06-20 01:41:14 +08:00
158 lines
6.8 KiB
Python
158 lines
6.8 KiB
Python
from collections import deque
|
|
import cv2
|
|
import numpy as np
|
|
# from fairseq import checkpoint_utils, options, tasks, utils
|
|
# from fairseq.dataclass.configs import GenerationConfig
|
|
|
|
class AVSpeechRecognition:
|
|
'''
|
|
Audio Video Speech Recognition based on AVHubert (arXiv:2201.02184 [eess.AS])
|
|
'''
|
|
def __init__(self, source, detector_path='face_detection_yunet_2022mar.onnx', margin=5, video_width=640, video_height=480, score_threshold=0.9, nms_threshold=0.3, top_k=5000):
|
|
'''
|
|
params:
|
|
source: video source (e.g. '0', 'video.mp4')
|
|
detector_path: face detection model path (default:'face_detection_yunet_2022mar.onnx')
|
|
margin: margin for temporal window (default:5)
|
|
video_width: video width (default:640)
|
|
video_height: video height (default:480)
|
|
score_threshold: score threshold for face detection (default:0.9)
|
|
nms_threshold: nms threshold for face detection (default:0.3)
|
|
top_k: top k faces for face detection (default:5000)
|
|
'''
|
|
self.cap = cv2.VideoCapture(source)
|
|
self.margin = margin
|
|
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, video_width)
|
|
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, video_height)
|
|
self.detector = cv2.FaceDetectorYN.create(detector_path, "", (video_width, video_height), score_threshold, nms_threshold, top_k)
|
|
self.landmarks_queue = deque(maxlen=margin)
|
|
self.frames_queue = deque(maxlen=margin)
|
|
|
|
def warp_image(self, frame, smoothed_landmarks):
|
|
'''
|
|
warps frame to make lips horizontal and fixed at center
|
|
params:
|
|
frame: input frame
|
|
smoothed_landmarks: smoothed landmarks
|
|
return:
|
|
warped_frame: warped frame
|
|
warped_landmarks: warped landmarks
|
|
'''
|
|
# TODO: fix warping
|
|
rotateby = np.arctan((smoothed_landmarks[6][1]-smoothed_landmarks[5][1])/(smoothed_landmarks[6][0]-smoothed_landmarks[5][0]))*180/np.pi
|
|
image_center = tuple((smoothed_landmarks[0]+smoothed_landmarks[1])/2)
|
|
rot_mat = cv2.getRotationMatrix2D(image_center, rotateby, 1)
|
|
trans_frame = cv2.warpAffine(frame, rot_mat, frame.shape[1::-1], flags=cv2.INTER_LINEAR)
|
|
trans_landmarks = np.hstack((smoothed_landmarks, np.ones(shape=(7,1))))@rot_mat.T
|
|
return trans_frame, trans_landmarks
|
|
|
|
def cut_patch(self, img, landmarks, height, width, threshold=5):
|
|
'''
|
|
cuts mouth roi from image based on the mouth landmarks
|
|
params:
|
|
img: input image
|
|
landmarks: mouth landmarks
|
|
height: height of patch
|
|
width: width of patch
|
|
threshold: threshold for cutting (default:5)
|
|
return:
|
|
cutted_img: cutted image
|
|
'''
|
|
center_x, center_y = np.mean(landmarks, axis=0)
|
|
if center_y - height < 0:
|
|
center_y = height
|
|
if center_y - height < 0 - threshold:
|
|
raise Exception('too much bias in height')
|
|
if center_x - width < 0:
|
|
center_x = width
|
|
if center_x - width < 0 - threshold:
|
|
raise Exception('too much bias in width')
|
|
|
|
if center_y + height > img.shape[0]:
|
|
center_y = img.shape[0] - height
|
|
if center_y + height > img.shape[0] + threshold:
|
|
raise Exception('too much bias in height')
|
|
if center_x + width > img.shape[1]:
|
|
center_x = img.shape[1] - width
|
|
if center_x + width > img.shape[1] + threshold:
|
|
raise Exception('too much bias in width')
|
|
|
|
cutted_img = np.copy(img[ int(round(center_y) - round(height)): int(round(center_y) + round(height)),
|
|
int(round(center_x) - round(width)): int(round(center_x) + round(width))])
|
|
return cutted_img
|
|
|
|
def preprocess(self, frame):
|
|
'''
|
|
preprocesses frame to get landmarks and mouth rois
|
|
params:
|
|
frame: input frame
|
|
return:
|
|
cropped: mouth roi
|
|
smoothed_landmarks: smoothed/averaged landmarks
|
|
'''
|
|
landmarks = self.detector.detect(frame)[-1]
|
|
if landmarks is not None:
|
|
landmarks = landmarks[:,:-1].reshape(landmarks.shape[0],7,2)
|
|
if len(landmarks) == 0:
|
|
return None, None
|
|
self.landmarks_queue.append(landmarks)
|
|
self.frames_queue.append(frame)
|
|
if len(self.landmarks_queue) < self.margin:
|
|
return None, None
|
|
smoothed_landmarks = np.mean(self.landmarks_queue, axis=0)[0]
|
|
trans_frame, trans_landmarks = self.warp_image(frame, smoothed_landmarks)
|
|
cropped = self.cut_patch(trans_frame, trans_landmarks[-2:], 96//2,96//2)
|
|
return cropped, smoothed_landmarks
|
|
return None, None
|
|
|
|
# def predict(sample):
|
|
# gen_cfg = GenerationConfig(beam=20)
|
|
# models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
|
# models = [model.eval().cuda() for model in models]
|
|
# saved_cfg.task.modalities = modalities
|
|
# saved_cfg.task.data = data_dir
|
|
# saved_cfg.task.label_dir = data_dir
|
|
# task = tasks.setup_task(saved_cfg.task)
|
|
# task.load_dataset(gen_subset, task_cfg=saved_cfg.task)
|
|
# generator = task.build_generator(models, gen_cfg)
|
|
|
|
# def decode_fn(x):
|
|
# dictionary = task.target_dictionary
|
|
# symbols_ignore = generator.symbols_to_strip_from_output
|
|
# symbols_ignore.add(dictionary.pad())
|
|
# return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)
|
|
|
|
# itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
|
|
# sample = next(itr)
|
|
# sample = utils.move_to_cuda(sample)
|
|
# hypos = task.inference_step(generator, models, sample)
|
|
# ref = decode_fn(sample['target'][0].int().cpu())
|
|
# hypo = hypos[0][0]['tokens'].int().cpu()
|
|
# hypo = decode_fn(hypo)
|
|
# return hypo, ref
|
|
|
|
def run(self):
|
|
'''
|
|
Read the video and process it.
|
|
'''
|
|
while True:
|
|
ret, frame = self.cap.read()
|
|
if not ret:
|
|
break
|
|
cutted_img, _ = self.preprocess(frame)
|
|
if cutted_img is not None:
|
|
cv2.imshow('cutted_img', cutted_img)
|
|
cv2.circle(frame, np.mean(self.landmarks_queue, axis=0)[0][5].astype(np.int32), 5, (0,0,255), -1)
|
|
cv2.circle(frame, np.mean(self.landmarks_queue, axis=0)[0][6].astype(np.int32), 5, (0,0,255), -1)
|
|
cv2.imshow('frame', frame)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
self.cap.release()
|
|
cv2.destroyAllWindows()
|
|
return 0
|
|
|
|
if __name__ == '__main__':
|
|
source = 0
|
|
recognizer = AVSpeechRecognition(source)
|
|
recognizer.run()
|