opencv/modules/objdetect/src/qrcode.cpp

4552 lines
168 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "opencv2/objdetect.hpp"
#include "opencv2/calib3d.hpp"
#include <opencv2/core/utils/logger.hpp>
#include "graphical_code_detector_impl.hpp"
#ifdef HAVE_QUIRC
#include "quirc.h"
#endif
#include <limits>
#include <cmath>
#include <queue>
#include <limits>
#include <map>
namespace cv
{
using std::vector;
using std::pair;
static bool checkQRInputImage(InputArray img, Mat& gray)
{
CV_Assert(!img.empty());
CV_CheckDepthEQ(img.depth(), CV_8U, "");
if (img.cols() <= 20 || img.rows() <= 20)
{
return false; // image data is not enough for providing reliable results
}
int incn = img.channels();
CV_Check(incn, incn == 1 || incn == 3 || incn == 4, "");
if (incn == 3 || incn == 4)
{
cvtColor(img, gray, COLOR_BGR2GRAY);
}
else
{
gray = img.getMat();
}
return true;
}
static void updatePointsResult(OutputArray points_, const vector<Point2f>& points)
{
if (points_.needed())
{
int N = int(points.size() / 4);
if (N > 0)
{
Mat m_p(N, 4, CV_32FC2, (void*)&points[0]);
int points_type = points_.fixedType() ? points_.type() : CV_32FC2;
m_p.reshape(2, points_.rows()).convertTo(points_, points_type); // Mat layout: N x 4 x 2cn
}
else
{
points_.release();
}
}
}
static Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2)
{
const float divisor = (a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x);
const float eps = 0.001f;
if (abs(divisor) < eps)
return a2;
Point2f result_square_angle(
((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) -
(b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) /
divisor,
((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) -
(b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) /
divisor
);
return result_square_angle;
}
// / | b
// / |
// / |
// a/ | c
static inline double getCosVectors(Point2f a, Point2f b, Point2f c)
{
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
}
static bool arePointsNearest(Point2f a, Point2f b, float delta = 0.0)
{
if ((abs(a.x - b.x) < delta) && (abs(a.y - b.y) < delta))
return true;
else
return false;
}
class QRDetect
{
public:
void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
bool localization();
bool computeTransformationPoints();
Mat getBinBarcode() { return bin_barcode; }
Mat getStraightBarcode() { return straight_barcode; }
vector<Point2f> getTransformationPoints() { return transformation_points; }
protected:
vector<Vec3d> searchHorizontalLines();
vector<Point2f> separateVerticalLines(const vector<Vec3d> &list_lines);
vector<Point2f> extractVerticalLines(const vector<Vec3d> &list_lines, double eps);
void fixationPoints(vector<Point2f> &local_point);
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
bool testByPassRoute(vector<Point2f> hull, int start, int finish);
Mat barcode, bin_barcode, resized_barcode, resized_bin_barcode, straight_barcode;
vector<Point2f> localization_points, transformation_points;
double eps_vertical, eps_horizontal, coeff_expansion;
enum resize_direction { ZOOMING, SHRINKING, UNCHANGED } purpose;
};
void QRDetect::init(const Mat& src, double eps_vertical_, double eps_horizontal_)
{
CV_TRACE_FUNCTION();
CV_Assert(!src.empty());
barcode = src.clone();
const double min_side = std::min(src.size().width, src.size().height);
if (min_side < 512.0)
{
purpose = ZOOMING;
coeff_expansion = 512.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR_EXACT);
}
else if (min_side > 512.0)
{
purpose = SHRINKING;
coeff_expansion = min_side / 512.0;
const int width = cvRound(src.size().width / coeff_expansion);
const int height = cvRound(src.size().height / coeff_expansion);
Size new_size(width, height);
resize(src, resized_barcode, new_size, 0, 0, INTER_AREA);
}
else
{
purpose = UNCHANGED;
coeff_expansion = 1.0;
}
eps_vertical = eps_vertical_;
eps_horizontal = eps_horizontal_;
if (!barcode.empty())
adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
else
bin_barcode.release();
if (!resized_barcode.empty())
adaptiveThreshold(resized_barcode, resized_bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
else
resized_bin_barcode.release();
}
vector<Vec3d> QRDetect::searchHorizontalLines()
{
CV_TRACE_FUNCTION();
vector<Vec3d> result;
const int height_bin_barcode = bin_barcode.rows;
const int width_bin_barcode = bin_barcode.cols;
const size_t test_lines_size = 5;
double test_lines[test_lines_size];
vector<size_t> pixels_position;
for (int y = 0; y < height_bin_barcode; y++)
{
pixels_position.clear();
const uint8_t *bin_barcode_row = bin_barcode.ptr<uint8_t>(y);
int pos = 0;
for (; pos < width_bin_barcode; pos++) { if (bin_barcode_row[pos] == 0) break; }
if (pos == width_bin_barcode) { continue; }
pixels_position.push_back(pos);
pixels_position.push_back(pos);
pixels_position.push_back(pos);
uint8_t future_pixel = 255;
for (int x = pos; x < width_bin_barcode; x++)
{
if (bin_barcode_row[x] == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
pixels_position.push_back(x);
}
}
pixels_position.push_back(width_bin_barcode - 1);
for (size_t i = 2; i < pixels_position.size() - 3; i+=2)
{
test_lines[0] = static_cast<double>(pixels_position[i - 1] - pixels_position[i - 2]);
test_lines[1] = static_cast<double>(pixels_position[i ] - pixels_position[i - 1]);
test_lines[2] = static_cast<double>(pixels_position[i + 1] - pixels_position[i ]);
test_lines[3] = static_cast<double>(pixels_position[i + 2] - pixels_position[i + 1]);
test_lines[4] = static_cast<double>(pixels_position[i + 3] - pixels_position[i + 2]);
double length = 0.0, weight = 0.0; // TODO avoid 'double' calculations
for (size_t j = 0; j < test_lines_size; j++) { length += test_lines[j]; }
if (length == 0) { continue; }
for (size_t j = 0; j < test_lines_size; j++)
{
if (j != 2) { weight += fabs((test_lines[j] / length) - 1.0/7.0); }
else { weight += fabs((test_lines[j] / length) - 3.0/7.0); }
}
if (weight < eps_vertical)
{
Vec3d line;
line[0] = static_cast<double>(pixels_position[i - 2]);
line[1] = y;
line[2] = length;
result.push_back(line);
}
}
}
return result;
}
vector<Point2f> QRDetect::separateVerticalLines(const vector<Vec3d> &list_lines)
{
CV_TRACE_FUNCTION();
const double min_dist_between_points = 10.0;
const double max_ratio = 1.0;
for (int coeff_epsilon_i = 1; coeff_epsilon_i < 101; ++coeff_epsilon_i)
{
const float coeff_epsilon = coeff_epsilon_i * 0.1f;
vector<Point2f> point2f_result = extractVerticalLines(list_lines, eps_horizontal * coeff_epsilon);
if (!point2f_result.empty())
{
vector<Point2f> centers;
Mat labels;
double compactness = kmeans(
point2f_result, 3, labels,
TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
3, KMEANS_PP_CENTERS, centers);
double min_dist = std::numeric_limits<double>::max();
for (size_t i = 0; i < centers.size(); i++)
{
double dist = norm(centers[i] - centers[(i+1) % centers.size()]);
if (dist < min_dist)
{
min_dist = dist;
}
}
if (min_dist < min_dist_between_points)
{
continue;
}
double mean_compactness = compactness / point2f_result.size();
double ratio = mean_compactness / min_dist;
if (ratio < max_ratio)
{
return point2f_result;
}
}
}
return vector<Point2f>(); // nothing
}
vector<Point2f> QRDetect::extractVerticalLines(const vector<Vec3d> &list_lines, double eps)
{
CV_TRACE_FUNCTION();
vector<Vec3d> result;
vector<double> test_lines; test_lines.reserve(6);
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
{
const int x = cvRound(list_lines[pnt][0] + list_lines[pnt][2] * 0.5);
const int y = cvRound(list_lines[pnt][1]);
// --------------- Search vertical up-lines --------------- //
test_lines.clear();
uint8_t future_pixel_up = 255;
int temp_length_up = 0;
for (int j = y; j < bin_barcode.rows - 1; j++)
{
uint8_t next_pixel = bin_barcode.ptr<uint8_t>(j + 1)[x];
temp_length_up++;
if (next_pixel == future_pixel_up)
{
future_pixel_up = static_cast<uint8_t>(~future_pixel_up);
test_lines.push_back(temp_length_up);
temp_length_up = 0;
if (test_lines.size() == 3)
break;
}
}
// --------------- Search vertical down-lines --------------- //
int temp_length_down = 0;
uint8_t future_pixel_down = 255;
for (int j = y; j >= 1; j--)
{
uint8_t next_pixel = bin_barcode.ptr<uint8_t>(j - 1)[x];
temp_length_down++;
if (next_pixel == future_pixel_down)
{
future_pixel_down = static_cast<uint8_t>(~future_pixel_down);
test_lines.push_back(temp_length_down);
temp_length_down = 0;
if (test_lines.size() == 6)
break;
}
}
// --------------- Compute vertical lines --------------- //
if (test_lines.size() == 6)
{
double length = 0.0, weight = 0.0; // TODO avoid 'double' calculations
for (size_t i = 0; i < test_lines.size(); i++)
length += test_lines[i];
CV_Assert(length > 0);
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i % 3 != 0)
{
weight += fabs((test_lines[i] / length) - 1.0/ 7.0);
}
else
{
weight += fabs((test_lines[i] / length) - 3.0/14.0);
}
}
if (weight < eps)
{
result.push_back(list_lines[pnt]);
}
}
}
vector<Point2f> point2f_result;
if (result.size() > 2)
{
for (size_t i = 0; i < result.size(); i++)
{
point2f_result.push_back(
Point2f(static_cast<float>(result[i][0] + result[i][2] * 0.5),
static_cast<float>(result[i][1])));
}
}
return point2f_result;
}
void QRDetect::fixationPoints(vector<Point2f> &local_point)
{
CV_TRACE_FUNCTION();
double cos_angles[3], norm_triangl[3];
norm_triangl[0] = norm(local_point[1] - local_point[2]);
norm_triangl[1] = norm(local_point[0] - local_point[2]);
norm_triangl[2] = norm(local_point[1] - local_point[0]);
cos_angles[0] = (norm_triangl[1] * norm_triangl[1] + norm_triangl[2] * norm_triangl[2]
- norm_triangl[0] * norm_triangl[0]) / (2 * norm_triangl[1] * norm_triangl[2]);
cos_angles[1] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[2] * norm_triangl[2]
- norm_triangl[1] * norm_triangl[1]) / (2 * norm_triangl[0] * norm_triangl[2]);
cos_angles[2] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[1] * norm_triangl[1]
- norm_triangl[2] * norm_triangl[2]) / (2 * norm_triangl[0] * norm_triangl[1]);
const double angle_barrier = 0.85;
if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier)
{
local_point.clear();
return;
}
size_t i_min_cos =
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
size_t index_max = 0;
double max_area = std::numeric_limits<double>::min();
for (size_t i = 0; i < local_point.size(); i++)
{
const size_t current_index = i % 3;
const size_t left_index = (i + 1) % 3;
const size_t right_index = (i + 2) % 3;
const Point2f current_point(local_point[current_index]),
left_point(local_point[left_index]), right_point(local_point[right_index]),
central_point(intersectionLines(current_point,
Point2f(static_cast<float>((local_point[left_index].x + local_point[right_index].x) * 0.5),
static_cast<float>((local_point[left_index].y + local_point[right_index].y) * 0.5)),
Point2f(0, static_cast<float>(bin_barcode.rows - 1)),
Point2f(static_cast<float>(bin_barcode.cols - 1),
static_cast<float>(bin_barcode.rows - 1))));
vector<Point2f> list_area_pnt;
list_area_pnt.push_back(current_point);
vector<LineIterator> list_line_iter;
list_line_iter.push_back(LineIterator(bin_barcode, current_point, left_point));
list_line_iter.push_back(LineIterator(bin_barcode, current_point, central_point));
list_line_iter.push_back(LineIterator(bin_barcode, current_point, right_point));
for (size_t k = 0; k < list_line_iter.size(); k++)
{
LineIterator& li = list_line_iter[k];
uint8_t future_pixel = 255, count_index = 0;
for(int j = 0; j < li.count; j++, ++li)
{
const Point p = li.pos();
if (p.x >= bin_barcode.cols ||
p.y >= bin_barcode.rows)
{
break;
}
const uint8_t value = bin_barcode.at<uint8_t>(p);
if (value == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
count_index++;
if (count_index == 3)
{
list_area_pnt.push_back(p);
break;
}
}
}
}
const double temp_check_area = contourArea(list_area_pnt);
if (temp_check_area > max_area)
{
index_max = current_index;
max_area = temp_check_area;
}
}
if (index_max == i_min_cos) { std::swap(local_point[0], local_point[index_max]); }
else { local_point.clear(); return; }
const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
if( determinant(m) > 0 )
{
std::swap(local_point[1], local_point[2]);
}
}
bool QRDetect::localization()
{
CV_TRACE_FUNCTION();
Point2f begin, end;
vector<Vec3d> list_lines_x = searchHorizontalLines();
if( list_lines_x.empty() ) { return false; }
vector<Point2f> list_lines_y = separateVerticalLines(list_lines_x);
if( list_lines_y.empty() ) { return false; }
Mat labels;
kmeans(list_lines_y, 3, labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
3, KMEANS_PP_CENTERS, localization_points);
fixationPoints(localization_points);
bool square_flag = false, local_points_flag = false;
double triangle_sides[3];
double triangle_perim, square_area, img_square_area;
if (localization_points.size() == 3)
{
triangle_sides[0] = norm(localization_points[0] - localization_points[1]);
triangle_sides[1] = norm(localization_points[1] - localization_points[2]);
triangle_sides[2] = norm(localization_points[2] - localization_points[0]);
triangle_perim = (triangle_sides[0] + triangle_sides[1] + triangle_sides[2]) / 2;
square_area = sqrt((triangle_perim * (triangle_perim - triangle_sides[0])
* (triangle_perim - triangle_sides[1])
* (triangle_perim - triangle_sides[2]))) * 2;
img_square_area = bin_barcode.cols * bin_barcode.rows;
if (square_area > (img_square_area * 0.2))
{
square_flag = true;
}
}
else
{
local_points_flag = true;
}
if ((square_flag || local_points_flag) && purpose == SHRINKING)
{
localization_points.clear();
bin_barcode = resized_bin_barcode.clone();
list_lines_x = searchHorizontalLines();
if( list_lines_x.empty() ) { return false; }
list_lines_y = separateVerticalLines(list_lines_x);
if( list_lines_y.empty() ) { return false; }
kmeans(list_lines_y, 3, labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
3, KMEANS_PP_CENTERS, localization_points);
fixationPoints(localization_points);
if (localization_points.size() != 3) { return false; }
const int width = cvRound(bin_barcode.size().width * coeff_expansion);
const int height = cvRound(bin_barcode.size().height * coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT);
bin_barcode = intermediate.clone();
for (size_t i = 0; i < localization_points.size(); i++)
{
localization_points[i] *= coeff_expansion;
}
}
if (purpose == ZOOMING)
{
const int width = cvRound(bin_barcode.size().width / coeff_expansion);
const int height = cvRound(bin_barcode.size().height / coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT);
bin_barcode = intermediate.clone();
for (size_t i = 0; i < localization_points.size(); i++)
{
localization_points[i] /= coeff_expansion;
}
}
for (size_t i = 0; i < localization_points.size(); i++)
{
for (size_t j = i + 1; j < localization_points.size(); j++)
{
if (norm(localization_points[i] - localization_points[j]) < 10)
{
return false;
}
}
}
return true;
}
bool QRDetect::computeTransformationPoints()
{
CV_TRACE_FUNCTION();
if (localization_points.size() != 3) { return false; }
vector<Point> locations, non_zero_elem[3], newHull;
vector<Point2f> new_non_zero_elem[3];
for (size_t i = 0; i < 3; i++)
{
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
uint8_t next_pixel, future_pixel = 255;
int count_test_lines = 0, index_c = max(0, min(cvRound(localization_points[i].x), bin_barcode.cols - 1));
const int index_r = max(0, min(cvRound(localization_points[i].y), bin_barcode.rows - 1));
for (; index_c < bin_barcode.cols - 1; index_c++)
{
next_pixel = bin_barcode.ptr<uint8_t>(index_r)[index_c + 1];
if (next_pixel == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
count_test_lines++;
if (count_test_lines == 2)
{
floodFill(bin_barcode, mask,
Point(index_c + 1, index_r), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
break;
}
}
}
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
findNonZero(mask_roi, non_zero_elem[i]);
newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
}
convexHull(newHull, locations);
for (size_t i = 0; i < locations.size(); i++)
{
for (size_t j = 0; j < 3; j++)
{
for (size_t k = 0; k < non_zero_elem[j].size(); k++)
{
if (locations[i] == non_zero_elem[j][k])
{
new_non_zero_elem[j].push_back(locations[i]);
}
}
}
}
double pentagon_diag_norm = -1;
Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
{
double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
if (temp_norm > pentagon_diag_norm)
{
down_left_edge_point = new_non_zero_elem[1][i];
up_right_edge_point = new_non_zero_elem[2][j];
pentagon_diag_norm = temp_norm;
}
}
}
if (down_left_edge_point == Point2f(0, 0) ||
up_right_edge_point == Point2f(0, 0) ||
new_non_zero_elem[0].size() == 0) { return false; }
double max_area = -1;
up_left_edge_point = new_non_zero_elem[0][0];
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
{
vector<Point2f> list_edge_points;
list_edge_points.push_back(new_non_zero_elem[0][i]);
list_edge_points.push_back(down_left_edge_point);
list_edge_points.push_back(up_right_edge_point);
double temp_area = fabs(contourArea(list_edge_points));
if (max_area < temp_area)
{
up_left_edge_point = new_non_zero_elem[0][i];
max_area = temp_area;
}
}
Point2f down_max_delta_point, up_max_delta_point;
double norm_down_max_delta = -1, norm_up_max_delta = -1;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i])
+ norm(down_left_edge_point - new_non_zero_elem[1][i]);
if (norm_down_max_delta < temp_norm_delta)
{
down_max_delta_point = new_non_zero_elem[1][i];
norm_down_max_delta = temp_norm_delta;
}
}
for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i])
+ norm(up_right_edge_point - new_non_zero_elem[2][i]);
if (norm_up_max_delta < temp_norm_delta)
{
up_max_delta_point = new_non_zero_elem[2][i];
norm_up_max_delta = temp_norm_delta;
}
}
transformation_points.push_back(down_left_edge_point);
transformation_points.push_back(up_left_edge_point);
transformation_points.push_back(up_right_edge_point);
transformation_points.push_back(
intersectionLines(down_left_edge_point, down_max_delta_point,
up_right_edge_point, up_max_delta_point));
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points);
transformation_points = quadrilateral;
int width = bin_barcode.size().width;
int height = bin_barcode.size().height;
for (size_t i = 0; i < transformation_points.size(); i++)
{
if ((cvRound(transformation_points[i].x) > width) ||
(cvRound(transformation_points[i].y) > height)) { return false; }
}
return true;
}
// test function (if true then ------> else <------ )
bool QRDetect::testByPassRoute(vector<Point2f> hull, int start, int finish)
{
CV_TRACE_FUNCTION();
int index_hull = start, next_index_hull, hull_size = (int)hull.size();
double test_length[2] = { 0.0, 0.0 };
do
{
next_index_hull = index_hull + 1;
if (next_index_hull == hull_size) { next_index_hull = 0; }
test_length[0] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
index_hull = start;
do
{
next_index_hull = index_hull - 1;
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
test_length[1] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
if (test_length[0] < test_length[1]) { return true; } else { return false; }
}
vector<Point2f> QRDetect::getQuadrilateral(vector<Point2f> angle_list)
{
CV_TRACE_FUNCTION();
size_t angle_size = angle_list.size();
uint8_t value, mask_value;
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
Mat fill_bin_barcode = bin_barcode.clone();
for (size_t i = 0; i < angle_size; i++)
{
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size],
angle_list[(i + 1) % angle_size]);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
Point p = line_iter.pos();
value = bin_barcode.at<uint8_t>(p);
mask_value = mask.at<uint8_t>(p + Point(1, 1));
if (value == 0 && mask_value == 0)
{
floodFill(fill_bin_barcode, mask, p, 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
}
}
}
vector<Point> locations;
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
findNonZero(mask_roi, locations);
for (size_t i = 0; i < angle_list.size(); i++)
{
int x = cvRound(angle_list[i].x);
int y = cvRound(angle_list[i].y);
locations.push_back(Point(x, y));
}
vector<Point> integer_hull;
convexHull(locations, integer_hull);
int hull_size = (int)integer_hull.size();
vector<Point2f> hull(hull_size);
for (int i = 0; i < hull_size; i++)
{
float x = saturate_cast<float>(integer_hull[i].x);
float y = saturate_cast<float>(integer_hull[i].y);
hull[i] = Point2f(x, y);
}
const double experimental_area = fabs(contourArea(hull));
vector<Point2f> result_hull_point(angle_size);
double min_norm;
for (size_t i = 0; i < angle_size; i++)
{
min_norm = std::numeric_limits<double>::max();
Point closest_pnt;
for (int j = 0; j < hull_size; j++)
{
double temp_norm = norm(hull[j] - angle_list[i]);
if (min_norm > temp_norm)
{
min_norm = temp_norm;
closest_pnt = hull[j];
}
}
result_hull_point[i] = closest_pnt;
}
int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0;
for (int i = 0; i < hull_size; i++)
{
if (result_hull_point[2] == hull[i]) { start_line[0] = i; }
if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; }
if (result_hull_point[0] == hull[i]) { finish_line[1] = i; }
if (result_hull_point[3] == hull[i]) { unstable_pnt = i; }
}
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull;
Point result_side_begin[4], result_side_end[4];
bool bypass_orientation = testByPassRoute(hull, start_line[0], finish_line[0]);
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[0];
do
{
if (bypass_orientation) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[1]) >
norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
Point intrsc_line_hull =
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[1], angle_list[2]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[index_hull] - hull[next_index_hull]) >
norm(angle_list[1] - angle_list[2]) * 0.1)
{
min_norm = temp_norm;
result_side_begin[0] = hull[index_hull];
result_side_end[0] = hull[next_index_hull];
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[0]);
if (min_norm == std::numeric_limits<double>::max())
{
result_side_begin[0] = angle_list[1];
result_side_end[0] = angle_list[2];
}
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[1];
bypass_orientation = testByPassRoute(hull, start_line[1], finish_line[1]);
do
{
if (bypass_orientation) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[0]) >
norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0];
Point intrsc_line_hull =
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[0], angle_list[1]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[index_hull] - hull[next_index_hull]) >
norm(angle_list[0] - angle_list[1]) * 0.05)
{
min_norm = temp_norm;
result_side_begin[1] = hull[index_hull];
result_side_end[1] = hull[next_index_hull];
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[1]);
if (min_norm == std::numeric_limits<double>::max())
{
result_side_begin[1] = angle_list[0];
result_side_end[1] = angle_list[1];
}
bypass_orientation = testByPassRoute(hull, start_line[0], unstable_pnt);
const bool extra_bypass_orientation = testByPassRoute(hull, finish_line[1], unstable_pnt);
vector<Point2f> result_angle_list(4), test_result_angle_list(4);
double min_diff_area = std::numeric_limits<double>::max();
index_hull = start_line[0];
const double standart_norm = std::max(
norm(result_side_begin[0] - result_side_end[0]),
norm(result_side_begin[1] - result_side_end[1]));
do
{
if (bypass_orientation) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1)
{ index_hull = next_index_hull; continue; }
extra_index_hull = finish_line[1];
do
{
if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; }
else { extra_next_index_hull = extra_index_hull - 1; }
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1)
{ extra_index_hull = extra_next_index_hull; continue; }
test_result_angle_list[0]
= intersectionLines(result_side_begin[0], result_side_end[0],
result_side_begin[1], result_side_end[1]);
test_result_angle_list[1]
= intersectionLines(result_side_begin[1], result_side_end[1],
hull[extra_index_hull], hull[extra_next_index_hull]);
test_result_angle_list[2]
= intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull],
hull[index_hull], hull[next_index_hull]);
test_result_angle_list[3]
= intersectionLines(hull[index_hull], hull[next_index_hull],
result_side_begin[0], result_side_end[0]);
const double test_diff_area
= fabs(fabs(contourArea(test_result_angle_list)) - experimental_area);
if (min_diff_area > test_diff_area)
{
min_diff_area = test_diff_area;
for (size_t i = 0; i < test_result_angle_list.size(); i++)
{
result_angle_list[i] = test_result_angle_list[i];
}
}
extra_index_hull = extra_next_index_hull;
}
while(extra_index_hull != unstable_pnt);
index_hull = next_index_hull;
}
while(index_hull != unstable_pnt);
// check label points
if (norm(result_angle_list[0] - angle_list[1]) > 2) { result_angle_list[0] = angle_list[1]; }
if (norm(result_angle_list[1] - angle_list[0]) > 2) { result_angle_list[1] = angle_list[0]; }
if (norm(result_angle_list[3] - angle_list[2]) > 2) { result_angle_list[3] = angle_list[2]; }
// check calculation point
if (norm(result_angle_list[2] - angle_list[3]) >
(norm(result_angle_list[0] - result_angle_list[1]) +
norm(result_angle_list[0] - result_angle_list[3])) * 0.5 )
{ result_angle_list[2] = angle_list[3]; }
return result_angle_list;
}
struct ImplContour : public GraphicalCodeDetector::Impl
{
public:
ImplContour(): epsX(0.2), epsY(0.1) {}
double epsX, epsY;
mutable vector<vector<Point2f>> alignmentMarkers;
mutable vector<Point2f> updateQrCorners;
bool useAlignmentMarkers = true;
bool detect(InputArray in, OutputArray points) const override;
std::string decode(InputArray img, InputArray points, OutputArray straight_qrcode) const override;
std::string detectAndDecode(InputArray img, OutputArray points, OutputArray straight_qrcode) const override;
bool detectMulti(InputArray img, OutputArray points) const override;
bool decodeMulti(InputArray img, InputArray points, std::vector<cv::String>& decoded_info,
OutputArrayOfArrays straight_qrcode) const override;
bool detectAndDecodeMulti(InputArray img, std::vector<cv::String>& decoded_info, OutputArray points,
OutputArrayOfArrays straight_qrcode) const override;
String decodeCurved(InputArray in, InputArray points, OutputArray straight_qrcode);
std::string detectAndDecodeCurved(InputArray in, OutputArray points, OutputArray straight_qrcode);
};
QRCodeDetector::QRCodeDetector() {
p = makePtr<ImplContour>();
}
QRCodeDetector& QRCodeDetector::setEpsX(double epsX) {
std::dynamic_pointer_cast<ImplContour>(p)->epsX = epsX;
return *this;
}
QRCodeDetector& QRCodeDetector::setEpsY(double epsY) {
std::dynamic_pointer_cast<ImplContour>(p)->epsY = epsY;
return *this;
}
bool ImplContour::detect(InputArray in, OutputArray points) const
{
Mat inarr;
if (!checkQRInputImage(in, inarr))
return false;
QRDetect qrdet;
qrdet.init(inarr, epsX, epsY);
if (!qrdet.localization()) { return false; }
if (!qrdet.computeTransformationPoints()) { return false; }
vector<Point2f> pnts2f = qrdet.getTransformationPoints();
updatePointsResult(points, pnts2f);
return true;
}
class QRDecode
{
public:
QRDecode(bool useAlignmentMarkers);
void init(const Mat &src, const vector<Point2f> &points);
Mat getIntermediateBarcode() { return intermediate; }
Mat getStraightBarcode() { return straight; }
size_t getVersion() { return version; }
std::string getDecodeInformation() { return result_info; }
bool straightDecodingProcess();
bool curvedDecodingProcess();
vector<Point2f> alignment_coords;
float coeff_expansion = 1.f;
vector<Point2f> getOriginalPoints() {return original_points;}
bool useAlignmentMarkers;
protected:
double getNumModules();
Mat getHomography() {
CV_TRACE_FUNCTION();
vector<Point2f> perspective_points = {{0.f, 0.f}, {test_perspective_size, 0.f},
{test_perspective_size, test_perspective_size},
{0.f, test_perspective_size}};
vector<Point2f> pts = original_points;
return findHomography(pts, perspective_points);
}
bool updatePerspective(const Mat& H);
bool versionDefinition();
void detectAlignment();
bool samplingForVersion();
bool decodingProcess();
inline double pointPosition(Point2f a, Point2f b , Point2f c);
float distancePointToLine(Point2f a, Point2f b , Point2f c);
void getPointsInsideQRCode(const vector<Point2f> &angle_list);
bool computeClosestPoints(const vector<Point> &result_integer_hull);
bool computeSidesPoints(const vector<Point> &result_integer_hull);
vector<Point> getPointsNearUnstablePoint(const vector<Point> &side, int start, int end, int step);
bool findAndAddStablePoint();
bool findIndexesCurvedSides();
bool findIncompleteIndexesCurvedSides();
Mat getPatternsMask();
Point findClosestZeroPoint(Point2f original_point);
bool findPatternsContours(vector<vector<Point> > &patterns_contours);
bool findPatternsVerticesPoints(vector<vector<Point> > &patterns_vertices_points);
bool findTempPatternsAddingPoints(vector<std::pair<int, vector<Point> > > &temp_patterns_add_points);
bool computePatternsAddingPoints(std::map<int, vector<Point> > &patterns_add_points);
bool addPointsToSides();
void completeAndSortSides();
vector<vector<float> > computeSpline(const vector<int> &x_arr, const vector<int> &y_arr);
bool createSpline(vector<vector<Point2f> > &spline_lines);
bool divideIntoEvenSegments(vector<vector<Point2f> > &segments_points);
bool straightenQRCodeInParts();
bool preparingCurvedQRCodes();
const static int NUM_SIDES = 2;
Mat original, bin_barcode, no_border_intermediate, intermediate, straight, curved_to_straight, test_image;
vector<Point2f> original_points;
Mat homography;
vector<Point2f> original_curved_points;
vector<Point> qrcode_locations;
vector<std::pair<size_t, Point> > closest_points;
vector<vector<Point> > sides_points;
std::pair<size_t, Point> unstable_pair;
vector<int> curved_indexes, curved_incomplete_indexes;
std::map<int, vector<Point> > complete_curved_sides;
std::string result_info;
uint8_t version, version_size;
float test_perspective_size;
struct sortPairAsc
{
bool operator()(const std::pair<size_t, double> &a,
const std::pair<size_t, double> &b) const
{
return a.second < b.second;
}
};
struct sortPairDesc
{
bool operator()(const std::pair<size_t, double> &a,
const std::pair<size_t, double> &b) const
{
return a.second > b.second;
}
};
struct sortPointsByX
{
bool operator()(const Point &a, const Point &b) const
{
return a.x < b.x;
}
};
struct sortPointsByY
{
bool operator()(const Point &a, const Point &b) const
{
return a.y < b.y;
}
};
};
float static getMinSideLen(const vector<Point2f> &points) {
CV_Assert(points.size() == 4ull);
double res = norm(points[1]-points[0]);
for (size_t i = 1ull; i < points.size(); i++) {
res = min(res, norm(points[i]-points[(i+1ull) % points.size()]));
}
return static_cast<float>(res);
}
void QRDecode::init(const Mat &src, const vector<Point2f> &points)
{
CV_TRACE_FUNCTION();
vector<Point2f> bbox = points;
original = src.clone();
test_image = src.clone();
adaptiveThreshold(original, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
intermediate = Mat::zeros(original.size(), CV_8UC1);
original_points = bbox;
version = 0;
version_size = 0;
test_perspective_size = max(getMinSideLen(points)+1.f, 251.f);
result_info = "";
}
inline double QRDecode::pointPosition(Point2f a, Point2f b , Point2f c)
{
return (a.x - b.x) * (c.y - b.y) - (c.x - b.x) * (a.y - b.y);
}
float QRDecode::distancePointToLine(Point2f a, Point2f b , Point2f c)
{
float A, B, C, result;
A = c.y - b.y;
B = c.x - b.x;
C = c.x * b.y - b.x * c.y;
float dist = sqrt(A*A + B*B);
if (dist == 0) return 0;
result = abs((A * a.x - B * a.y + C)) / dist;
return result;
}
void QRDecode::getPointsInsideQRCode(const vector<Point2f> &angle_list)
{
CV_TRACE_FUNCTION();
size_t angle_size = angle_list.size();
Mat contour_mask = Mat::zeros(bin_barcode.size(), CV_8UC1);
for (size_t i = 0; i < angle_size; i++)
{
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size],
angle_list[(i + 1) % angle_size]);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
Point p = line_iter.pos();
contour_mask.at<uint8_t>(p + Point(1, 1)) = 255;
}
}
Point2f center_point = intersectionLines(angle_list[0], angle_list[2],
angle_list[1], angle_list[3]);
floodFill(contour_mask, center_point, 255, 0, Scalar(), Scalar(), FLOODFILL_FIXED_RANGE);
vector<Point> locations;
findNonZero(contour_mask, locations);
Mat fill_bin_barcode = bin_barcode.clone();
Mat qrcode_mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
uint8_t value, mask_value;
for(size_t i = 0; i < locations.size(); i++)
{
value = bin_barcode.at<uint8_t>(locations[i]);
mask_value = qrcode_mask.at<uint8_t>(locations[i] + Point(1, 1));
if (value == 0 && mask_value == 0)
{
floodFill(fill_bin_barcode, qrcode_mask, locations[i], 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
}
}
Mat qrcode_mask_roi = qrcode_mask(Range(1, qrcode_mask.rows - 1), Range(1, qrcode_mask.cols - 1));
findNonZero(qrcode_mask_roi, qrcode_locations);
}
bool QRDecode::computeClosestPoints(const vector<Point> &result_integer_hull)
{
CV_TRACE_FUNCTION();
double min_norm, max_norm = 0.0;
size_t idx_min = (size_t)-1;
for (size_t i = 0; i < original_points.size(); i++)
{
min_norm = std::numeric_limits<double>::max();
Point closest_pnt;
for (size_t j = 0; j < result_integer_hull.size(); j++)
{
Point integer_original_point = original_points[i];
double temp_norm = norm(integer_original_point - result_integer_hull[j]);
if (temp_norm < min_norm)
{
min_norm = temp_norm;
closest_pnt = result_integer_hull[j];
idx_min = j;
}
}
if (min_norm > max_norm)
{
max_norm = min_norm;
unstable_pair = std::pair<size_t,Point>(i, closest_pnt);
}
CV_Assert(idx_min != (size_t)-1);
closest_points.push_back(std::pair<size_t,Point>(idx_min, closest_pnt));
}
if (closest_points.size() != 4)
{
return false;
}
return true;
}
bool QRDecode::computeSidesPoints(const vector<Point> &result_integer_hull)
{
size_t num_closest_points = closest_points.size();
vector<Point> points;
for(size_t i = 0; i < num_closest_points; i++)
{
points.clear();
size_t start = closest_points[i].first,
end = closest_points[(i + 1) % num_closest_points].first;
if (start < end)
{
points.insert(points.end(),
result_integer_hull.begin() + start,
result_integer_hull.begin() + end + 1);
}
else
{
points.insert(points.end(),
result_integer_hull.begin() + start,
result_integer_hull.end());
points.insert(points.end(),
result_integer_hull.begin(),
result_integer_hull.begin() + end + 1);
}
if (abs(result_integer_hull[start].x - result_integer_hull[end].x) >
abs(result_integer_hull[start].y - result_integer_hull[end].y))
{
if (points.front().x > points.back().x)
{
reverse(points.begin(), points.end());
}
}
else
{
if (points.front().y > points.back().y)
{
reverse(points.begin(), points.end());
}
}
if (points.empty())
{
return false;
}
sides_points.push_back(points);
}
return true;
}
vector<Point> QRDecode::getPointsNearUnstablePoint(const vector<Point> &side, int start, int end, int step)
{
vector<Point> points;
Point p1, p2, p3;
double max_neighbour_angle = 1.0;
int index_max_angle = start + step;
bool enough_points = true;
if(side.size() < 3)
{
points.insert(points.end(), side.begin(), side.end());
return points;
}
const double cos_angle_threshold = -0.97;
for (int i = start + step; i != end; i+= step)
{
p1 = side[i + step];
if (norm(p1 - side[i]) < 5) { continue; }
p2 = side[i];
if (norm(p2 - side[i - step]) < 5) { continue; }
p3 = side[i - step];
double neighbour_angle = getCosVectors(p1, p2, p3);
neighbour_angle = floor(neighbour_angle*1000)/1000;
if ((neighbour_angle <= max_neighbour_angle) && (neighbour_angle < cos_angle_threshold))
{
max_neighbour_angle = neighbour_angle;
index_max_angle = i;
}
else if (i == end - step)
{
enough_points = false;
index_max_angle = i;
}
}
if (enough_points)
{
p1 = side[index_max_angle + step];
p2 = side[index_max_angle];
p3 = side[index_max_angle - step];
points.push_back(p1);
points.push_back(p2);
points.push_back(p3);
}
else
{
p1 = side[index_max_angle];
p2 = side[index_max_angle - step];
points.push_back(p1);
points.push_back(p2);
}
return points;
}
bool QRDecode::findAndAddStablePoint()
{
size_t idx_unstable_point = unstable_pair.first;
Point unstable_point = unstable_pair.second;
vector<Point> current_side_points, next_side_points;
Point a1, a2, b1, b2;
int start_current, end_current, step_current, start_next, end_next, step_next;
vector<Point>::iterator it_a, it_b;
vector<Point> &current_side = sides_points[(idx_unstable_point + 3) % 4];
vector<Point> &next_side = sides_points[idx_unstable_point];
if(current_side.size() < 2 || next_side.size() < 2)
{
return false;
}
if(arePointsNearest(unstable_point, current_side.front(), 3.0))
{
start_current = (int)current_side.size() - 1;
end_current = 0;
step_current = -1;
it_a = current_side.begin();
}
else if(arePointsNearest(unstable_point, current_side.back(), 3.0))
{
start_current = 0;
end_current = (int)current_side.size() - 1;
step_current = 1;
it_a = current_side.end() - 1;
}
else
{
return false;
}
if(arePointsNearest(unstable_point, next_side.front(), 3.0))
{
start_next = (int)next_side.size() - 1;
end_next = 0;
step_next = -1;
it_b = next_side.begin();
}
else if(arePointsNearest(unstable_point, next_side.back(), 3.0))
{
start_next = 0;
end_next = (int)next_side.size() - 1;
step_next = 1;
it_b = next_side.end() - 1;
}
else
{
return false;
}
current_side_points = getPointsNearUnstablePoint(current_side, start_current, end_current, step_current);
next_side_points = getPointsNearUnstablePoint(next_side, start_next, end_next, step_next);
if (current_side_points.size() < 2 || next_side_points.size() < 2)
{
return false;
}
a1 = current_side_points[0];
a2 = current_side_points[1];
b1 = next_side_points[0];
b2 = next_side_points[1];
if(norm(a1 - b1) < 10 && next_side_points.size() > 2)
{
b1 = next_side_points[1];
b2 = next_side_points[2];
}
Point stable_point = intersectionLines(a1, a2, b1, b2);
const double max_side = std::max(bin_barcode.size().width, bin_barcode.size().height);
if ((abs(stable_point.x) > max_side) || (abs(stable_point.y) > max_side))
{
return false;
}
while (*it_a != a1)
{
it_a = current_side.erase(it_a);
if (it_a == current_side.end())
{
it_a -= step_current;
}
Point point_to_remove_from_current = *it_a;
if (point_to_remove_from_current.x > max_side || point_to_remove_from_current.y > max_side)
{
break;
}
}
while (*it_b != b1)
{
it_b = next_side.erase(it_b);
if (it_b == next_side.end())
{
it_b -= step_next;
}
Point point_to_remove_from_next = *it_b;
if (point_to_remove_from_next.x > max_side || point_to_remove_from_next.y > max_side)
{
break;
}
}
bool add_stable_point = true;
for (size_t i = 0; i < original_points.size(); i++)
{
if(arePointsNearest(stable_point, original_points[i], 3.0))
{
add_stable_point = false;
break;
}
}
if(add_stable_point)
{
current_side.insert(it_a, stable_point);
next_side.insert(it_b, stable_point);
closest_points[unstable_pair.first].second = stable_point;
}
else
{
stable_point = original_points[unstable_pair.first];
closest_points[unstable_pair.first].second = stable_point;
current_side.insert(it_a, stable_point);
next_side.insert(it_b, stable_point);
}
return true;
}
bool QRDecode::findIndexesCurvedSides()
{
double max_dist_to_arc_side = 0.0;
size_t num_closest_points = closest_points.size();
int idx_curved_current = -1, idx_curved_opposite = -1;
for (size_t i = 0; i < num_closest_points; i++)
{
double dist_to_arc = 0.0;
Point arc_start = closest_points[i].second;
Point arc_end = closest_points[(i + 1) % num_closest_points].second;
for (size_t j = 0; j < sides_points[i].size(); j++)
{
Point arc_point = sides_points[i][j];
double dist = distancePointToLine(arc_point, arc_start, arc_end);
dist_to_arc += dist;
}
dist_to_arc /= sides_points[i].size();
if (dist_to_arc > max_dist_to_arc_side)
{
max_dist_to_arc_side = dist_to_arc;
idx_curved_current = (int)i;
idx_curved_opposite = (int)(i + 2) % num_closest_points;
}
}
if (idx_curved_current == -1 || idx_curved_opposite == -1)
{
return false;
}
curved_indexes.push_back(idx_curved_current);
curved_indexes.push_back(idx_curved_opposite);
return true;
}
bool QRDecode::findIncompleteIndexesCurvedSides()
{
int num_closest_points = (int)closest_points.size();
for (int i = 0; i < NUM_SIDES; i++)
{
int idx_side = curved_indexes[i];
int side_size = (int)sides_points[idx_side].size();
double max_norm = norm(closest_points[idx_side].second -
closest_points[(idx_side + 1) % num_closest_points].second);
double real_max_norm = 0;
for (int j = 0; j < side_size - 1; j++)
{
double temp_norm = norm(sides_points[idx_side][j] -
sides_points[idx_side][j + 1]);
if (temp_norm > real_max_norm)
{
real_max_norm = temp_norm;
}
}
if (real_max_norm > (0.5 * max_norm))
{
curved_incomplete_indexes.push_back(curved_indexes[i]);
}
}
if (curved_incomplete_indexes.size() == 0)
{
return false;
}
return true;
}
Point QRDecode::findClosestZeroPoint(Point2f original_point)
{
int orig_x = static_cast<int>(original_point.x);
int orig_y = static_cast<int>(original_point.y);
uint8_t value;
Point zero_point;
const int step = 2;
for (int i = orig_x - step; i >= 0 && i <= orig_x + step; i++)
{
for (int j = orig_y - step; j >= 0 && j <= orig_y + step; j++)
{
Point p(i, j);
value = bin_barcode.at<uint8_t>(p);
if (value == 0) zero_point = p;
}
}
return zero_point;
}
Mat QRDecode::getPatternsMask()
{
Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1, Scalar(0));
Mat patterns_mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1, Scalar(0));
Mat fill_bin_barcode = bin_barcode.clone();
for (size_t i = 0; i < original_points.size(); i++)
{
if (i == 2) continue;
Point p = findClosestZeroPoint(original_points[i]);
floodFill(fill_bin_barcode, mask, p, 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
patterns_mask += mask;
}
Mat mask_roi = patterns_mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
return mask_roi;
}
bool QRDecode::findPatternsContours(vector<vector<Point> > &patterns_contours)
{
Mat patterns_mask = getPatternsMask();
findContours(patterns_mask, patterns_contours, RETR_EXTERNAL, CHAIN_APPROX_NONE, Point(0, 0));
if (patterns_contours.size() != 3) { return false; }
return true;
}
bool QRDecode::findPatternsVerticesPoints(vector<vector<Point> > &patterns_vertices_points)
{
vector<vector<Point> > patterns_contours;
if(!findPatternsContours(patterns_contours))
{
return false;
}
const int num_vertices = 4;
for(size_t i = 0; i < patterns_contours.size(); i++)
{
vector<Point> convexhull_contours, new_convexhull_contours;
convexHull(patterns_contours[i], convexhull_contours);
size_t number_pnts_in_hull = convexhull_contours.size();
vector<std::pair<size_t, double> > cos_angles_in_hull;
vector<size_t> min_angle_pnts_indexes;
for(size_t j = 1; j < number_pnts_in_hull + 1; j++)
{
double cos_angle = getCosVectors(convexhull_contours[(j - 1) % number_pnts_in_hull],
convexhull_contours[ j % number_pnts_in_hull],
convexhull_contours[(j + 1) % number_pnts_in_hull]);
cos_angles_in_hull.push_back(std::pair<size_t, double>(j, cos_angle));
}
sort(cos_angles_in_hull.begin(), cos_angles_in_hull.end(), sortPairDesc());
for (size_t j = 0; j < cos_angles_in_hull.size(); j++)
{
bool add_edge = true;
for(size_t k = 0; k < min_angle_pnts_indexes.size(); k++)
{
if(norm(convexhull_contours[cos_angles_in_hull[j].first % number_pnts_in_hull] -
convexhull_contours[min_angle_pnts_indexes[k] % number_pnts_in_hull]) < 3)
{
add_edge = false;
}
}
if (add_edge)
{
min_angle_pnts_indexes.push_back(cos_angles_in_hull[j].first % number_pnts_in_hull);
}
if ((int)min_angle_pnts_indexes.size() == num_vertices) { break; }
}
sort(min_angle_pnts_indexes.begin(), min_angle_pnts_indexes.end());
vector<Point> contour_vertices_points;
for (size_t k = 0; k < min_angle_pnts_indexes.size(); k++)
{
contour_vertices_points.push_back(convexhull_contours[min_angle_pnts_indexes[k]]);
}
patterns_vertices_points.push_back(contour_vertices_points);
}
if (patterns_vertices_points.size() != 3)
{
return false;
}
return true;
}
bool QRDecode::findTempPatternsAddingPoints(vector<std::pair<int, vector<Point> > > &temp_patterns_add_points)
{
vector<vector<Point> >patterns_contours, patterns_vertices_points;
if(!findPatternsVerticesPoints(patterns_vertices_points))
{
return false;
}
if(!findPatternsContours(patterns_contours))
{
return false;
}
for (size_t i = 0; i < curved_incomplete_indexes.size(); i++)
{
int idx_curved_side = curved_incomplete_indexes[i];
Point close_transform_pnt_curr = original_points[idx_curved_side];
Point close_transform_pnt_next = original_points[(idx_curved_side + 1) % 4];
vector<size_t> patterns_indexes;
for (size_t j = 0; j < patterns_vertices_points.size(); j++)
{
for (size_t k = 0; k < patterns_vertices_points[j].size(); k++)
{
if (norm(close_transform_pnt_curr - patterns_vertices_points[j][k]) < 5)
{
patterns_indexes.push_back(j);
break;
}
if (norm(close_transform_pnt_next - patterns_vertices_points[j][k]) < 5)
{
patterns_indexes.push_back(j);
break;
}
}
}
for (size_t j = 0; j < patterns_indexes.size(); j++)
{
vector<Point> vertices = patterns_vertices_points[patterns_indexes[j]];
vector<std::pair<int, double> > vertices_dist_pair;
vector<Point> points;
for (size_t k = 0; k < vertices.size(); k++)
{
double dist_to_side = distancePointToLine(vertices[k], close_transform_pnt_curr,
close_transform_pnt_next);
vertices_dist_pair.push_back(std::pair<int, double>((int)k, dist_to_side));
}
if (vertices_dist_pair.size() == 0)
{
return false;
}
sort(vertices_dist_pair.begin(), vertices_dist_pair.end(), sortPairAsc());
Point p1, p2;
int index_p1_in_vertices = 0, index_p2_in_vertices = 0;
for (int k = 4; k > 0; k--)
{
if((vertices_dist_pair[0].first == k % 4) && (vertices_dist_pair[1].first == (k - 1) % 4))
{
index_p1_in_vertices = vertices_dist_pair[0].first;
index_p2_in_vertices = vertices_dist_pair[1].first;
}
else if((vertices_dist_pair[1].first == k % 4) && (vertices_dist_pair[0].first == (k - 1) % 4))
{
index_p1_in_vertices = vertices_dist_pair[1].first;
index_p2_in_vertices = vertices_dist_pair[0].first;
}
}
if (index_p1_in_vertices == index_p2_in_vertices) return false;
p1 = vertices[index_p1_in_vertices];
p2 = vertices[index_p2_in_vertices];
size_t index_p1_in_contour = 0, index_p2_in_contour = 0;
vector<Point> add_points = patterns_contours[patterns_indexes[j]];
for(size_t k = 0; k < add_points.size(); k++)
{
if (add_points[k] == p1)
{
index_p1_in_contour = k;
}
if (add_points[k] == p2)
{
index_p2_in_contour = k;
}
}
if (index_p1_in_contour > index_p2_in_contour)
{
for (size_t k = index_p1_in_contour; k < add_points.size(); k++)
{
points.push_back(add_points[k]);
}
for (size_t k = 0; k <= index_p2_in_contour; k++)
{
points.push_back(add_points[k]);
}
}
else if (index_p1_in_contour < index_p2_in_contour)
{
for (size_t k = index_p1_in_contour; k <= index_p2_in_contour; k++)
{
points.push_back(add_points[k]);
}
}
else
{
return false;
}
if (abs(p1.x - p2.x) > abs(p1.y - p2.y))
{
sort(points.begin(), points.end(), sortPointsByX());
}
else
{
sort(points.begin(), points.end(), sortPointsByY());
}
temp_patterns_add_points.push_back(std::pair<int, vector<Point> >(idx_curved_side,points));
}
}
return true;
}
bool QRDecode::computePatternsAddingPoints(std::map<int, vector<Point> > &patterns_add_points)
{
vector<std::pair<int, vector<Point> > > temp_patterns_add_points;
if(!findTempPatternsAddingPoints(temp_patterns_add_points))
{
return false;
}
const int num_points_in_pattern = 3;
for(size_t i = 0; i < temp_patterns_add_points.size(); i++)
{
int idx_side = temp_patterns_add_points[i].first;
int size = (int)temp_patterns_add_points[i].second.size();
float step = static_cast<float>(size) / num_points_in_pattern;
vector<Point> temp_points;
for (int j = 0; j < num_points_in_pattern; j++)
{
float val = j * step;
int idx = cvRound(val) >= size ? size - 1 : cvRound(val);
temp_points.push_back(temp_patterns_add_points[i].second[idx]);
}
temp_points.push_back(temp_patterns_add_points[i].second.back());
if(patterns_add_points.count(idx_side) == 1)
{
patterns_add_points[idx_side].insert(patterns_add_points[idx_side].end(),
temp_points.begin(), temp_points.end());
}
patterns_add_points.insert(std::pair<int, vector<Point> >(idx_side, temp_points));
}
if (patterns_add_points.size() == 0)
{
return false;
}
return true;
}
bool QRDecode::addPointsToSides()
{
if(!computePatternsAddingPoints(complete_curved_sides))
{
return false;
}
std::map<int, vector<Point> >::iterator it;
double mean_step = 0.0;
size_t num_points_at_side = 0;
for (it = complete_curved_sides.begin(); it != complete_curved_sides.end(); ++it)
{
int count = -1;
const size_t num_points_at_pattern = it->second.size();
for(size_t j = 0; j < num_points_at_pattern - 1; j++, count++)
{
if (count == 3) continue;
double temp_norm = norm(it->second[j] -
it->second[j + 1]);
mean_step += temp_norm;
}
num_points_at_side += num_points_at_pattern;
}
if (num_points_at_side == 0)
{
return false;
}
mean_step /= num_points_at_side;
const size_t num_incomplete_sides = curved_incomplete_indexes.size();
for (size_t i = 0; i < num_incomplete_sides; i++)
{
int idx = curved_incomplete_indexes[i];
vector<int> sides_points_indexes;
const int num_points_at_side_to_add = (int)sides_points[idx].size();
for (int j = 0; j < num_points_at_side_to_add; j++)
{
bool not_too_close = true;
const size_t num_points_at_side_exist = complete_curved_sides[idx].size();
for (size_t k = 0; k < num_points_at_side_exist; k++)
{
double temp_norm = norm(sides_points[idx][j] - complete_curved_sides[idx][k]);
if (temp_norm < mean_step)
{
not_too_close = false;
break;
}
}
if (not_too_close)
{
sides_points_indexes.push_back(j);
}
}
for (size_t j = 0; j < sides_points_indexes.size(); j++)
{
bool not_equal = true;
for (size_t k = 0; k < complete_curved_sides[idx].size(); k++)
{
if (sides_points[idx][sides_points_indexes[j]] ==
complete_curved_sides[idx][k])
{
not_equal = false;
}
}
if (not_equal)
{
complete_curved_sides[idx].push_back(sides_points[idx][sides_points_indexes[j]]);
}
}
}
return true;
}
void QRDecode::completeAndSortSides()
{
if (complete_curved_sides.size() < 2)
{
for (int i = 0; i < NUM_SIDES; i++)
{
if(complete_curved_sides.count(curved_indexes[i]) == 0)
{
int idx_second_cur_side = curved_indexes[i];
complete_curved_sides.insert(std::pair<int,vector<Point> >(idx_second_cur_side, sides_points[idx_second_cur_side]));
}
}
}
std::map<int,vector<Point> >::iterator it;
for (it = complete_curved_sides.begin(); it != complete_curved_sides.end(); ++it)
{
Point p1 = it->second.front();
Point p2 = it->second.back();
if (abs(p1.x - p2.x) > abs(p1.y - p2.y))
{
sort(it->second.begin(), it->second.end(), sortPointsByX());
}
else
{
sort(it->second.begin(), it->second.end(), sortPointsByY());
}
}
}
vector<vector<float> > QRDecode::computeSpline(const vector<int> &x_arr, const vector<int> &y_arr)
{
const int n = (int)x_arr.size();
vector<float> a, b(n - 1), d(n - 1), h(n - 1), alpha(n - 1), c(n), l(n), mu(n), z(n);
for (int i = 0; i < (int)y_arr.size(); i++)
{
a.push_back(static_cast<float>(x_arr[i]));
}
for (int i = 0; i < n - 1; i++)
{
h[i] = static_cast<float>(y_arr[i + 1] - y_arr[i]);
}
for (int i = 1; i < n - 1; i++)
{
alpha[i] = 3 / h[i] * (a[i + 1] - a[i]) - 3 / (h[i - 1]) * (a[i] - a[i - 1]);
}
l[0] = 1;
mu[0] = 0;
z[0] = 0;
for (int i = 1; i < n - 1; i++)
{
l[i] = 2 * (y_arr[i + 1] - y_arr[i - 1]) - h[i - 1] * mu[i - 1];
mu[i] = h[i] / l[i];
z[i] = (alpha[i] - h[i - 1] * z[i - 1]) / l[i];
}
l[n - 1] = 1;
z[n - 1] = 0;
c[n - 1] = 0;
for(int j = n - 2; j >= 0; j--)
{
c[j] = z[j] - mu[j] * c[j + 1];
b[j] = (a[j + 1] - a[j]) / h[j] - (h[j] * (c[j + 1] + 2 * c[j])) / 3;
d[j] = (c[j + 1] - c[j]) / (3 * h[j]);
}
vector<vector<float> > S(n - 1);
for (int i = 0; i < n - 1; i++)
{
S[i].push_back(a[i]);
S[i].push_back(b[i]);
S[i].push_back(c[i]);
S[i].push_back(d[i]);
}
return S;
}
bool QRDecode::createSpline(vector<vector<Point2f> > &spline_lines)
{
int start, end;
vector<vector<float> > S;
for (int idx = 0; idx < NUM_SIDES; idx++)
{
int idx_curved_side = curved_indexes[idx];
vector<Point> spline_points = complete_curved_sides.find(idx_curved_side)->second;
vector<int> x_arr, y_arr;
for (size_t j = 0; j < spline_points.size(); j++)
{
x_arr.push_back(cvRound(spline_points[j].x));
y_arr.push_back(cvRound(spline_points[j].y));
}
bool horizontal_order = abs(x_arr.front() - x_arr.back()) > abs(y_arr.front() - y_arr.back());
vector<int>& second_arr = horizontal_order ? x_arr : y_arr;
vector<int>& first_arr = horizontal_order ? y_arr : x_arr;
S = computeSpline(first_arr, second_arr);
int closest_point_first = horizontal_order ? closest_points[idx_curved_side].second.x
: closest_points[idx_curved_side].second.y;
int closest_point_second = horizontal_order ? closest_points[(idx_curved_side + 1) % 4].second.x
: closest_points[(idx_curved_side + 1) % 4].second.y;
start = idx_curved_side;
end = (idx_curved_side + 1) % 4;
if(closest_point_first > closest_point_second)
{
start = (idx_curved_side + 1) % 4;
end = idx_curved_side;
}
int closest_point_start = horizontal_order ? closest_points[start].second.x : closest_points[start].second.y;
int closest_point_end = horizontal_order ? closest_points[end].second.x : closest_points[end].second.y;
for (int index = closest_point_start; index <= closest_point_end; index++)
{
if (index == second_arr.front())
{
spline_lines[idx].push_back(closest_points[start].second);
}
for (size_t i = 0; i < second_arr.size() - 1; i++)
{
if ((index > second_arr[i]) && (index <= second_arr[i + 1]))
{
float val = S[i][0] + S[i][1] * (index - second_arr[i]) + S[i][2] * (index - second_arr[i]) * (index - second_arr[i])
+ S[i][3] * (index - second_arr[i]) * (index - second_arr[i]) * (index - second_arr[i]);
spline_lines[idx].push_back(horizontal_order ? Point2f(static_cast<float>(index), val) : Point2f(val, static_cast<float>(index)));
}
}
}
}
for (int i = 0; i < NUM_SIDES; i++)
{
if (spline_lines[i].size() == 0)
{
return false;
}
}
return true;
}
bool QRDecode::divideIntoEvenSegments(vector<vector<Point2f> > &segments_points)
{
vector<vector<Point2f> > spline_lines(NUM_SIDES);
if (!createSpline(spline_lines))
{
return false;
}
float mean_num_points_in_line = 0.0;
for (int i = 0; i < NUM_SIDES; i++)
{
mean_num_points_in_line += spline_lines[i].size();
}
mean_num_points_in_line /= NUM_SIDES;
const int min_num_points = 1, max_num_points = cvRound(mean_num_points_in_line / 2.0);
float linear_threshold = 0.5f;
for (int num = min_num_points; num < max_num_points; num++)
{
for (int i = 0; i < NUM_SIDES; i++)
{
segments_points[i].clear();
int size = (int)spline_lines[i].size();
float step = static_cast<float>(size) / num;
for (int j = 0; j < num; j++)
{
float val = j * step;
int idx = cvRound(val) >= size ? size - 1 : cvRound(val);
segments_points[i].push_back(spline_lines[i][idx]);
}
segments_points[i].push_back(spline_lines[i].back());
}
float mean_of_two_sides = 0.0;
for (int i = 0; i < NUM_SIDES; i++)
{
float mean_dist_in_segment = 0.0;
for (size_t j = 0; j < segments_points[i].size() - 1; j++)
{
Point2f segment_start = segments_points[i][j];
Point2f segment_end = segments_points[i][j + 1];
vector<Point2f>::iterator it_start, it_end, it;
it_start = find(spline_lines[i].begin(), spline_lines[i].end(), segment_start);
it_end = find(spline_lines[i].begin(), spline_lines[i].end(), segment_end);
float max_dist_to_line = 0.0;
for (it = it_start; it != it_end; it++)
{
float temp_dist = distancePointToLine(*it, segment_start, segment_end);
if (temp_dist > max_dist_to_line)
{
max_dist_to_line = temp_dist;
}
}
mean_dist_in_segment += max_dist_to_line;
}
mean_dist_in_segment /= segments_points[i].size();
mean_of_two_sides += mean_dist_in_segment;
}
mean_of_two_sides /= NUM_SIDES;
if (mean_of_two_sides < linear_threshold)
{
break;
}
}
return true;
}
bool QRDecode::straightenQRCodeInParts()
{
vector<vector<Point2f> > segments_points(NUM_SIDES);
if (!divideIntoEvenSegments(segments_points))
{
return false;
}
vector<Point2f> current_curved_side, opposite_curved_side;
for (int i = 0; i < NUM_SIDES; i++)
{
Point2f temp_point_start = segments_points[i].front();
Point2f temp_point_end = segments_points[i].back();
bool horizontal_order = (abs(temp_point_start.x - temp_point_end.x) >
abs(temp_point_start.y - temp_point_end.y));
float compare_point_current = horizontal_order ? segments_points[i].front().y
: segments_points[(i + 1) % 2].front().x;
float compare_point_opposite = horizontal_order ? segments_points[(i + 1) % 2].front().y
: segments_points[i].front().x;
if (compare_point_current > compare_point_opposite)
{
current_curved_side = segments_points[i];
opposite_curved_side = segments_points[(i + 1) % 2];
}
}
if (current_curved_side.size() != opposite_curved_side.size())
{
return false;
}
size_t number_pnts_to_cut = current_curved_side.size();
if (number_pnts_to_cut == 0)
{
return false;
}
float perspective_curved_size = max(getMinSideLen(original_points)+1.f, 251.f);;
const Size temporary_size(cvRound(perspective_curved_size), cvRound(perspective_curved_size));
float dist = perspective_curved_size / (number_pnts_to_cut - 1);
Mat perspective_result = Mat::zeros(temporary_size, CV_8UC1);
vector<Point2f> curved_parts_points;
float start_cut = 0.0;
vector<Point2f> temp_closest_points(4);
for (size_t i = 1; i < number_pnts_to_cut; i++)
{
curved_parts_points.clear();
Mat test_mask = Mat::zeros(bin_barcode.size(), CV_8UC1);
Point2f start_point = current_curved_side[i];
Point2f prev_start_point = current_curved_side[i - 1];
Point2f finish_point = opposite_curved_side[i];
Point2f prev_finish_point = opposite_curved_side[i - 1];
for (size_t j = 0; j < qrcode_locations.size(); j++)
{
if ((pointPosition(start_point, finish_point, qrcode_locations[j]) >= 0) &&
(pointPosition(prev_start_point, prev_finish_point, qrcode_locations[j]) <= 0))
{
test_mask.at<uint8_t>(qrcode_locations[j]) = 255;
}
}
vector<Point2f> perspective_points;
perspective_points.push_back(Point2f(0.0, start_cut));
perspective_points.push_back(Point2f(perspective_curved_size, start_cut));
perspective_points.push_back(Point2f(perspective_curved_size, start_cut + dist));
perspective_points.push_back(Point2f(0.0, start_cut+dist));
perspective_points.push_back(Point2f(perspective_curved_size * 0.5f, start_cut + dist * 0.5f));
if (i == 1)
{
for (size_t j = 0; j < closest_points.size(); j++)
{
if (arePointsNearest(closest_points[j].second, prev_start_point, 3.0))
{
temp_closest_points[j] = perspective_points[0];
}
else if (arePointsNearest(closest_points[j].second, prev_finish_point, 3.0))
{
temp_closest_points[j] = perspective_points[1];
}
}
}
if (i == number_pnts_to_cut - 1)
{
for (size_t j = 0; j < closest_points.size(); j++)
{
if (arePointsNearest(closest_points[j].second, finish_point, 3.0))
{
temp_closest_points[j] = perspective_points[2];
}
else if (arePointsNearest(closest_points[j].second, start_point, 3.0))
{
temp_closest_points[j] = perspective_points[3];
}
}
}
start_cut += dist;
curved_parts_points.push_back(prev_start_point);
curved_parts_points.push_back(prev_finish_point);
curved_parts_points.push_back(finish_point);
curved_parts_points.push_back(start_point);
Point2f center_point = intersectionLines(curved_parts_points[0], curved_parts_points[2],
curved_parts_points[1], curved_parts_points[3]);
if (cvIsNaN(center_point.x) || cvIsNaN(center_point.y))
return false;
vector<Point2f> pts = curved_parts_points;
pts.push_back(center_point);
Mat H = findHomography(pts, perspective_points);
if (H.empty())
return false;
Mat temp_intermediate(temporary_size, CV_8UC1);
warpPerspective(test_mask, temp_intermediate, H, temporary_size, INTER_NEAREST);
perspective_result += temp_intermediate;
}
Mat white_mask = Mat(temporary_size, CV_8UC1, Scalar(255));
Mat inversion = white_mask - perspective_result;
Mat temp_result;
original_curved_points = temp_closest_points;
Point2f original_center_point = intersectionLines(original_curved_points[0], original_curved_points[2],
original_curved_points[1], original_curved_points[3]);
original_curved_points.push_back(original_center_point);
for (size_t i = 0; i < original_curved_points.size(); i++)
{
if (cvIsNaN(original_curved_points[i].x) || cvIsNaN(original_curved_points[i].y))
return false;
}
vector<Point2f> perspective_straight_points;
perspective_straight_points.push_back(Point2f(0.f, 0.f));
perspective_straight_points.push_back(Point2f(perspective_curved_size, 0.f));
perspective_straight_points.push_back(Point2f(perspective_curved_size, perspective_curved_size));
perspective_straight_points.push_back(Point2f(0.f, perspective_curved_size));
perspective_straight_points.push_back(Point2f(perspective_curved_size * 0.5f, perspective_curved_size * 0.5f));
Mat H = findHomography(original_curved_points, perspective_straight_points);
if (H.empty())
return false;
warpPerspective(inversion, temp_result, H, temporary_size, INTER_NEAREST, BORDER_REPLICATE);
no_border_intermediate = temp_result(Range(1, temp_result.rows), Range(1, temp_result.cols));
const int border = cvRound(0.1 * perspective_curved_size);
const int borderType = BORDER_CONSTANT;
copyMakeBorder(no_border_intermediate, curved_to_straight, border, border, border, border, borderType, Scalar(255));
intermediate = curved_to_straight;
return true;
}
bool QRDecode::preparingCurvedQRCodes()
{
vector<Point> result_integer_hull;
getPointsInsideQRCode(original_points);
if (qrcode_locations.size() == 0)
return false;
convexHull(qrcode_locations, result_integer_hull);
if (!computeClosestPoints(result_integer_hull))
return false;
if (!computeSidesPoints(result_integer_hull))
return false;
if (!findAndAddStablePoint())
return false;
if (!findIndexesCurvedSides())
return false;
if (findIncompleteIndexesCurvedSides())
{
if(!addPointsToSides())
return false;
}
completeAndSortSides();
if (!straightenQRCodeInParts())
return false;
return true;
}
/**
* @param finderPattern 4 points of finder pattern markers, calculated by findPatternsVerticesPoints()
* @return true if the pattern has the correct side lengths
*/
static inline bool checkFinderPatternByAspect(const vector<Point> &finderPattern) {
if (finderPattern.size() != 4ull)
return false;
float sidesLen[4];
for (size_t i = 0; i < finderPattern.size(); i++) {
sidesLen[i] = (sqrt(normL2Sqr<float>(Point2f(finderPattern[i] - finderPattern[(i+1ull)%finderPattern.size()]))));
}
const float maxSide = max(max(sidesLen[0], sidesLen[1]), max(sidesLen[2], sidesLen[3]));
const float minSide = min(min(sidesLen[0], sidesLen[1]), min(sidesLen[2], sidesLen[3]));
const float patternMaxRelativeLen = .3f;
if (1.f - minSide / maxSide > patternMaxRelativeLen)
return false;
return true;
}
/**
* @param finderPattern - 4 points of finder pattern markers, calculated by findPatternsVerticesPoints()
* @param cornerPointsQR - 4 corner points of QR code
* @return pair<int, int> first - the index in points of finderPattern closest to the corner of the QR code,
* second - the index in points of cornerPointsQR closest to the corner of finderPattern
*
* This function matches finder patterns to the corners of the QR code. Points of finder pattern calculated by
* findPatternsVerticesPoints() may be erroneous, so they are checked.
*/
static inline std::pair<int, int> matchPatternPoints(const vector<Point> &finderPattern,
const vector<Point2f>& cornerPointsQR) {
if (!checkFinderPatternByAspect(finderPattern))
return std::make_pair(-1, -1);
float distanceToOrig = normL2Sqr<float>(Point2f(finderPattern[0]) - cornerPointsQR[0]);
int closestFinderPatternV = 0;
int closetOriginalV = 0;
for (size_t i = 0ull; i < finderPattern.size(); i++) {
for (size_t j = 0ull; j < cornerPointsQR.size(); j++) {
const float tmp = normL2Sqr<float>(Point2f(finderPattern[i]) - cornerPointsQR[j]);
if (tmp < distanceToOrig) {
distanceToOrig = tmp;
closestFinderPatternV = (int)i;
closetOriginalV = (int)j;
}
}
}
distanceToOrig = sqrt(distanceToOrig);
// check that the distance from the QR pattern to the corners of the QR code is small
const float originalQrSide = sqrt(normL2Sqr<float>(cornerPointsQR[0] - cornerPointsQR[1]))*0.5f +
sqrt(normL2Sqr<float>(cornerPointsQR[0] - cornerPointsQR[3]))*0.5f;
const float maxRelativeDistance = .1f;
if (distanceToOrig/originalQrSide > maxRelativeDistance)
return std::make_pair(-1, -1);
return std::make_pair(closestFinderPatternV, closetOriginalV);
}
double QRDecode::getNumModules() {
vector<vector<Point>> finderPatterns;
double numModulesX = 0., numModulesY = 0.;
if (findPatternsVerticesPoints(finderPatterns)) {
double pattern_distance[4] = {0.,0.,0.,0.};
for (auto& pattern : finderPatterns) {
auto indexes = matchPatternPoints(pattern, original_points);
if (indexes == std::make_pair(-1, -1))
return 0.;
Point2f vf[4] = {pattern[indexes.first % 4], pattern[(1+indexes.first) % 4],
pattern[(2+indexes.first) % 4], pattern[(3+indexes.first) % 4]};
for (int i = 1; i < 4; i++) {
pattern_distance[indexes.second] += (norm(vf[i] - vf[i-1]));
}
pattern_distance[indexes.second] += norm(vf[3] - vf[0]);
pattern_distance[indexes.second] /= 4.;
}
const double moduleSizeX = (pattern_distance[0] + pattern_distance[1])/(2.*7.);
const double moduleSizeY = (pattern_distance[0] + pattern_distance[3])/(2.*7.);
numModulesX = norm(original_points[1] - original_points[0])/moduleSizeX;
numModulesY = norm(original_points[3] - original_points[0])/moduleSizeY;
}
return (numModulesX + numModulesY)/2.;
}
// use code from https://stackoverflow.com/questions/13238704/calculating-the-position-of-qr-code-alignment-patterns
static inline vector<pair<int, int>> getAlignmentCoordinates(int version) {
if (version <= 1) return {};
int intervals = (version / 7) + 1; // Number of gaps between alignment patterns
int distance = 4 * version + 4; // Distance between first and last alignment pattern
int step = cvRound((double)distance / (double)intervals); // Round equal spacing to nearest integer
step += step & 0b1; // Round step to next even number
vector<int> coordinates((size_t)intervals + 1ull);
coordinates[0] = 6; // First coordinate is always 6 (can't be calculated with step)
for (int i = 1; i <= intervals; i++) {
coordinates[i] = (6 + distance - step * (intervals - i)); // Start right/bottom and go left/up by step*k
}
if (version >= 7) {
return {std::make_pair(coordinates.back(), coordinates.back()),
std::make_pair(coordinates.back(), coordinates[coordinates.size()-2]),
std::make_pair(coordinates[coordinates.size()-2], coordinates.back()),
std::make_pair(coordinates[coordinates.size()-2], coordinates[coordinates.size()-2]),
std::make_pair(coordinates[0], coordinates[1]),
std::make_pair(coordinates[1], coordinates[0]),
};
}
return {std::make_pair(coordinates.back(), coordinates.back())};
}
bool QRDecode::updatePerspective(const Mat& H)
{
if (H.empty())
return false;
homography = H;
Mat temp_intermediate;
const Size temporary_size(cvRound(test_perspective_size), cvRound(test_perspective_size));
warpPerspective(bin_barcode, temp_intermediate, H, temporary_size, INTER_NEAREST);
no_border_intermediate = temp_intermediate(Range(1, temp_intermediate.rows), Range(1, temp_intermediate.cols));
const int border = cvRound(0.1 * test_perspective_size);
const int borderType = BORDER_CONSTANT;
copyMakeBorder(no_border_intermediate, intermediate, border, border, border, border, borderType, Scalar(255));
return true;
}
static inline Point computeOffset(const vector<Point>& v)
{
// compute the width/height of convex hull
Rect areaBox = boundingRect(v);
// compute the good offset
// the box is consisted by 7 steps
// to pick the middle of the stripe, it needs to be 1/14 of the size
const int cStep = 7 * 2;
Point offset = Point(areaBox.width, areaBox.height);
offset /= cStep;
return offset;
}
// QR code with version 7 or higher has a special 18 bit version number code.
// @return std::pair<double, int> first - distance to estimatedVersion, second - version
/**
* @param numModules - estimated numModules
* @param estimatedVersion
* @return pair<double, int>, first - Hamming distance to 18 bit code, second - closest version
*
* QR code with version 7 or higher has a special 18 bit version number code:
* https://www.thonky.com/qr-code-tutorial/format-version-information
*/
static inline std::pair<double, int> getVersionByCode(double numModules, Mat qr, int estimatedVersion) {
const double moduleSize = qr.rows / numModules;
Point2d startVersionInfo1 = Point2d((numModules-8.-3.)*moduleSize, 0.);
Point2d endVersionInfo1 = Point2d((numModules-8.)*moduleSize, moduleSize*6.);
Point2d startVersionInfo2 = Point2d(0., (numModules-8.-3.)*moduleSize);
Point2d endVersionInfo2 = Point2d(moduleSize*6., (numModules-8.)*moduleSize);
Mat v1(qr, Rect2d(startVersionInfo1, endVersionInfo1));
Mat v2(qr, Rect2d(startVersionInfo2, endVersionInfo2));
const double thresh = 127.;
resize(v1, v1, Size(3, 6), 0., 0., INTER_AREA);
threshold(v1, v1, thresh, 255, THRESH_BINARY);
resize(v2, v2, Size(6, 3), 0., 0., INTER_AREA);
threshold(v2, v2, thresh, 255, THRESH_BINARY);
Mat version1, version2;
// convert version1 (top right version information block) and
// version2 (bottom left version information block) to version table format
// https://www.thonky.com/qr-code-tutorial/format-version-tables
rotate((255-v1)/255, version1, ROTATE_180), rotate(((255-v2)/255).t(), version2, ROTATE_180);
static uint8_t versionCodes[][18] = {{0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0},{0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0},
{0,0,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0,1},{0,0,1,0,1,0,0,1,0,0,1,1,0,1,0,0,1,1},
{0,0,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,0},{0,0,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,0},
{0,0,1,1,0,1,1,0,0,0,0,1,0,0,0,1,1,1},{0,0,1,1,1,0,0,1,1,0,0,0,0,0,1,1,0,1},
{0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0},{0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0},
{0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,1,0,1},{0,1,0,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1},
{0,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0},{0,1,0,1,0,0,1,0,0,1,1,0,1,0,0,1,1,0},
{0,1,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1},{0,1,0,1,1,0,1,0,0,0,1,1,0,0,1,0,0,1},
{0,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,0,0},{0,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,0,0},
{0,1,1,0,0,1,0,0,0,1,1,1,1,0,0,0,0,1},{0,1,1,0,1,0,1,1,1,1,1,0,1,0,1,0,1,1},
{0,1,1,0,1,1,0,0,0,0,1,0,0,0,1,1,1,0},{0,1,1,1,0,0,1,1,0,0,0,0,0,1,1,0,1,0},
{0,1,1,1,0,1,0,0,1,1,0,0,1,1,1,1,1,1},{0,1,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1},
{0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0},{1,0,0,0,0,0,1,0,0,1,1,1,0,1,0,1,0,1},
{1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0,0},{1,0,0,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0},
{1,0,0,0,1,1,0,1,1,1,1,0,0,1,1,1,1,1},{1,0,0,1,0,0,1,0,1,1,0,0,0,0,1,0,1,1},
{1,0,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1,0},{1,0,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0},
{1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,0,0,1},{1,0,1,0,0,0,1,1,0,0,0,1,1,0,1,0,0,1}
};
double minDist = 19.;
int bestVersion = -1;
const double penaltyFactor = 0.8;
for (int i = 0; i < (int)(sizeof(versionCodes)/sizeof(versionCodes[0])); i++) {
Mat currVers(Size(3, 6), CV_8UC1, versionCodes[i]);
// minimum hamming distance between version = 8
double tmp = norm(currVers, version1, NORM_HAMMING) + penaltyFactor*abs(estimatedVersion-i-7);
if (tmp < minDist) {
bestVersion = i+7;
minDist = tmp;
}
tmp = norm(currVers, version2, NORM_HAMMING) + penaltyFactor*abs(estimatedVersion-i-7);
if (tmp < minDist) {
bestVersion = i+7;
minDist = tmp;
}
}
return std::make_pair(minDist, bestVersion);
}
bool QRDecode::versionDefinition()
{
CV_TRACE_FUNCTION();
CV_LOG_DEBUG(NULL, "QR corners: " << original_points[0] << " " << original_points[1] << " " << original_points[2] <<
" " << original_points[3]);
LineIterator line_iter(intermediate, Point2f(0, 0), Point2f(test_perspective_size, test_perspective_size));
Point black_point = Point(0, 0);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
const uint8_t value = intermediate.at<uint8_t>(line_iter.pos());
if (value == 0)
{
black_point = line_iter.pos();
break;
}
}
Mat mask = Mat::zeros(intermediate.rows + 2, intermediate.cols + 2, CV_8UC1);
floodFill(intermediate, mask, black_point, 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
vector<Point> locations, non_zero_elem;
Mat mask_roi = mask(Range(1, intermediate.rows - 1), Range(1, intermediate.cols - 1));
findNonZero(mask_roi, non_zero_elem);
convexHull(non_zero_elem, locations);
Point offset = computeOffset(locations);
Point temp_remote = locations[0], remote_point;
const Point delta_diff = offset;
for (size_t i = 0; i < locations.size(); i++)
{
if (norm(black_point - temp_remote) <= norm(black_point - locations[i]))
{
const uint8_t value = intermediate.at<uint8_t>(temp_remote - delta_diff);
temp_remote = locations[i];
if (value == 0) { remote_point = temp_remote - delta_diff; }
else { remote_point = temp_remote - (delta_diff / 2); }
}
}
size_t transition_x = 0 , transition_y = 0;
uint8_t future_pixel = 255;
const uint8_t *intermediate_row = intermediate.ptr<uint8_t>(remote_point.y);
for(int i = remote_point.x; i < intermediate.cols; i++)
{
if (intermediate_row[i] == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
transition_x++;
}
}
future_pixel = 255;
for(int j = remote_point.y; j < intermediate.rows; j++)
{
const uint8_t value = intermediate.at<uint8_t>(Point(j, remote_point.x));
if (value == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
transition_y++;
}
}
const int versionByTransition = saturate_cast<uint8_t>((std::min(transition_x, transition_y) - 1) * 0.25 - 1);
const int numModulesByTransition = 21 + (versionByTransition - 1) * 4;
const double numModulesByFinderPattern = getNumModules();
const double versionByFinderPattern = (numModulesByFinderPattern - 21.) * .25 + 1.;
bool useFinderPattern = false;
const double thresholdFinderPattern = 0.2;
const double roundingError = abs(numModulesByFinderPattern - cvRound(numModulesByFinderPattern));
if (cvRound(versionByFinderPattern) >= 1 && versionByFinderPattern <= 6. &&
transition_x != transition_y && roundingError < thresholdFinderPattern) {
useFinderPattern = true;
}
bool useCode = false;
int versionByCode = 7;
if (cvRound(versionByFinderPattern) >= 7 || versionByTransition >= 7) {
vector<std::pair<double, int>> versionAndDistances;
if (cvRound(versionByFinderPattern) >= 7) {
versionAndDistances.push_back(getVersionByCode(numModulesByFinderPattern, no_border_intermediate,
cvRound(versionByFinderPattern)));
}
if (versionByTransition >= 7) {
versionAndDistances.push_back(getVersionByCode(numModulesByTransition, no_border_intermediate,
versionByTransition));
}
const auto& bestVersion = min(versionAndDistances.front(), versionAndDistances.back());
double distanceByCode = bestVersion.first;
versionByCode = bestVersion.second;
if (distanceByCode < 5.) {
useCode = true;
}
}
if (useCode) {
CV_LOG_DEBUG(NULL, "Version type: useCode");
version = (uint8_t)versionByCode;
}
else if (useFinderPattern ) {
CV_LOG_DEBUG(NULL, "Version type: useFinderPattern");
version = (uint8_t)cvRound(versionByFinderPattern);
}
else {
CV_LOG_DEBUG(NULL, "Version type: useTransition");
version = (uint8_t)versionByTransition;
}
version_size = 21 + (version - 1) * 4;
if ( !(0 < version && version <= 40) ) { return false; }
CV_LOG_DEBUG(NULL, "QR version: " << (int)version);
return true;
}
void QRDecode::detectAlignment() {
vector<pair<int, int>> alignmentPositions = getAlignmentCoordinates(version);
if (alignmentPositions.size() > 0) {
vector<Point2f> perspective_points = {{0.f, 0.f}, {test_perspective_size, 0.f}, {0.f, test_perspective_size}};
vector<Point2f> object_points = {original_points[0], original_points[1], original_points[3]};
// create alignment image
static uint8_t alignmentMarker[25] = {
0, 0, 0, 0, 0,
0, 255, 255, 255, 0,
0, 255, 0, 255, 0,
0, 255, 255, 255, 0,
0, 0, 0, 0, 0
};
Mat alignmentMarkerMat(5, 5, CV_8UC1, alignmentMarker);
const float module_size = test_perspective_size / version_size;
Mat resizedAlignmentMarker;
resize(alignmentMarkerMat, resizedAlignmentMarker,
Size(cvRound(module_size * 5.f), cvRound(module_size * 5.f)), 0, 0, INTER_AREA);
const float module_offset = 1.9f;
const float offset = (module_size * (5 + module_offset * 2)); // 5 modules in alignment marker, 2 x module_offset modules in offset
for (const pair<int, int>& alignmentPos : alignmentPositions) {
const float left_top_x = (module_size * (alignmentPos.first - 2.f - module_offset)); // add offset
const float left_top_y = (module_size * (alignmentPos.second - 2.f - module_offset)); // add offset
Mat subImage(no_border_intermediate, Rect(cvRound(left_top_x), cvRound(left_top_y), cvRound(offset), cvRound(offset)));
Mat resTemplate;
matchTemplate(subImage, resizedAlignmentMarker, resTemplate, TM_CCOEFF_NORMED);
double minVal = 0., maxVal = 0.;
Point minLoc, maxLoc, matchLoc;
minMaxLoc(resTemplate, &minVal, &maxVal, &minLoc, &maxLoc);
CV_LOG_DEBUG(NULL, "Alignment maxVal: " << maxVal);
if (maxVal > 0.65) {
const float templateOffset = static_cast<float>(resizedAlignmentMarker.size().width) / 2.f;
Point2f alignmentCoord(Point2f(maxLoc.x + left_top_x + templateOffset, maxLoc.y + left_top_y + templateOffset));
alignment_coords.push_back(alignmentCoord);
perspectiveTransform(alignment_coords, alignment_coords, homography.inv());
CV_LOG_DEBUG(NULL, "Alignment coords: " << alignment_coords);
const float relativePosX = (alignmentPos.first + 0.5f) / version_size;
const float relativePosY = (alignmentPos.second + 0.5f) / version_size;
perspective_points.push_back({relativePosX * test_perspective_size, relativePosY * test_perspective_size});
object_points.push_back(alignment_coords.back());
}
}
if (object_points.size() > 3ull) {
double ransacReprojThreshold = 10.;
if (version == 2) { // in low version original_points[2] may be calculated more accurately using intersections method
object_points.push_back(original_points[2]);
ransacReprojThreshold = 5.; // set more strict ransacReprojThreshold
perspective_points.push_back({test_perspective_size, test_perspective_size});
}
Mat H = findHomography(object_points, perspective_points, RANSAC, ransacReprojThreshold);
if (H.empty())
return;
updatePerspective(H);
vector<Point2f> newCorner2 = {{test_perspective_size, test_perspective_size}};
perspectiveTransform(newCorner2, newCorner2, H.inv());
original_points[2] = newCorner2.front();
}
}
}
bool QRDecode::samplingForVersion()
{
CV_TRACE_FUNCTION();
const double multiplyingFactor = (version < 3) ? 1. :
(version == 3) ? 2. :
3.;
const Size newFactorSize(
cvRound(no_border_intermediate.size().width * multiplyingFactor),
cvRound(no_border_intermediate.size().height * multiplyingFactor));
Mat postIntermediate(newFactorSize, CV_8UC1);
resize(no_border_intermediate, postIntermediate, newFactorSize, 0, 0, INTER_AREA);
const int delta_rows = cvRound((postIntermediate.rows * 1.0) / version_size);
const int delta_cols = cvRound((postIntermediate.cols * 1.0) / version_size);
// number of elements in the tail
const int skipped_rows = postIntermediate.rows - delta_rows * version_size;
const int skipped_cols = postIntermediate.cols - delta_cols * version_size;
vector<int> deltas_rows(version_size, delta_rows);
vector<int> deltas_cols(version_size, delta_cols);
for (int i = 0; i < abs(skipped_rows); i++) {
// fix deltas_rows at each skip_step
const double skip_step = static_cast<double>(version_size)/abs(skipped_rows);
const int corrected_index = static_cast<int>(i*skip_step + skip_step/2);
deltas_rows[corrected_index] += skipped_rows > 0 ? 1 : -1;
}
for (int i = 0; i < abs(skipped_cols); i++) {
// fix deltas_cols at each skip_step
const double skip_step = static_cast<double>(version_size)/abs(skipped_cols);
const int corrected_index = static_cast<int>(i*skip_step + skip_step/2);
deltas_cols[corrected_index] += skipped_cols > 0 ? 1 : -1;
}
const double totalFrequencyElem = countNonZero(postIntermediate) / static_cast<double>(postIntermediate.total());
straight = Mat(Size(version_size, version_size), CV_8UC1, Scalar(0));
for (int r = 0, i = 0; i < version_size; r += deltas_rows[i], i++) {
for (int c = 0, j = 0; j < version_size; c += deltas_cols[j], j++) {
Mat tile = postIntermediate(
Range(r, min(r + delta_rows, postIntermediate.rows)),
Range(c, min(c + delta_cols, postIntermediate.cols)));
const double frequencyElem = (countNonZero(tile) * 1.0) / tile.total();
straight.ptr<uint8_t>(i)[j] = (frequencyElem < totalFrequencyElem) ? 0 : 255;
}
}
return true;
}
bool QRDecode::decodingProcess()
{
#ifdef HAVE_QUIRC
if (straight.empty()) { return false; }
quirc_code qr_code;
memset(&qr_code, 0, sizeof(qr_code));
qr_code.size = straight.size().width;
for (int x = 0; x < qr_code.size; x++)
{
for (int y = 0; y < qr_code.size; y++)
{
int position = y * qr_code.size + x;
qr_code.cell_bitmap[position >> 3]
|= straight.ptr<uint8_t>(y)[x] ? 0 : (1 << (position & 7));
}
}
quirc_data qr_code_data;
quirc_decode_error_t errorCode = quirc_decode(&qr_code, &qr_code_data);
if(errorCode == QUIRC_ERROR_DATA_ECC){
quirc_flip(&qr_code);
errorCode = quirc_decode(&qr_code, &qr_code_data);
}
if (errorCode != 0) { return false; }
for (int i = 0; i < qr_code_data.payload_len; i++)
{
result_info += qr_code_data.payload[i];
}
return true;
#else
return false;
#endif
}
bool QRDecode::straightDecodingProcess()
{
#ifdef HAVE_QUIRC
if (!updatePerspective(getHomography())) { return false; }
if (!versionDefinition()) { return false; }
if (useAlignmentMarkers)
detectAlignment();
if (!samplingForVersion()) { return false; }
if (!decodingProcess()) { return false; }
return true;
#else
std::cout << "Library QUIRC is not linked. No decoding is performed. Take it to the OpenCV repository." << std::endl;
return false;
#endif
}
bool QRDecode::curvedDecodingProcess()
{
#ifdef HAVE_QUIRC
if (!preparingCurvedQRCodes()) { return false; }
if (!versionDefinition()) { return false; }
if (!samplingForVersion()) { return false; }
if (!decodingProcess()) { return false; }
return true;
#else
std::cout << "Library QUIRC is not linked. No decoding is performed. Take it to the OpenCV repository." << std::endl;
return false;
#endif
}
QRDecode::QRDecode(bool _useAlignmentMarkers):
useAlignmentMarkers(_useAlignmentMarkers),
version(0),
version_size(0),
test_perspective_size(0.f)
{}
std::string ImplContour::decode(InputArray in, InputArray points, OutputArray straight_qrcode) const {
Mat inarr;
if (!checkQRInputImage(in, inarr))
return std::string();
vector<Point2f> src_points;
points.copyTo(src_points);
CV_Assert(src_points.size() == 4);
CV_CheckGT(contourArea(src_points), 0.0, "Invalid QR code source points");
QRDecode qrdec(useAlignmentMarkers);
qrdec.init(inarr, src_points);
bool ok = qrdec.straightDecodingProcess();
std::string decoded_info = qrdec.getDecodeInformation();
if (!ok && straight_qrcode.needed())
{
straight_qrcode.release();
}
else if (straight_qrcode.needed())
{
qrdec.getStraightBarcode().convertTo(straight_qrcode, CV_8UC1);
}
if (ok && !decoded_info.empty()) {
alignmentMarkers = {qrdec.alignment_coords};
updateQrCorners = qrdec.getOriginalPoints();
}
return ok ? decoded_info : std::string();
}
String QRCodeDetector::decodeCurved(InputArray in, InputArray points, OutputArray straight_qrcode) {
CV_Assert(p);
return std::dynamic_pointer_cast<ImplContour>(p)->decodeCurved(in, points, straight_qrcode);
}
String ImplContour::decodeCurved(InputArray in, InputArray points, OutputArray straight_qrcode)
{
Mat inarr;
if (!checkQRInputImage(in, inarr))
return std::string();
vector<Point2f> src_points;
points.copyTo(src_points);
CV_Assert(src_points.size() == 4);
CV_CheckGT(contourArea(src_points), 0.0, "Invalid QR code source points");
QRDecode qrdec(useAlignmentMarkers);
qrdec.init(inarr, src_points);
bool ok = qrdec.curvedDecodingProcess();
std::string decoded_info = qrdec.getDecodeInformation();
if (!ok && straight_qrcode.needed())
{
straight_qrcode.release();
}
else if (straight_qrcode.needed())
{
qrdec.getStraightBarcode().convertTo(straight_qrcode, CV_8UC1);
}
return ok ? decoded_info : std::string();
}
std::string ImplContour::detectAndDecode(InputArray in, OutputArray points_, OutputArray straight_qrcode) const {
Mat inarr;
if (!checkQRInputImage(in, inarr))
{
points_.release();
return std::string();
}
vector<Point2f> points;
bool ok = detect(inarr, points);
if (!ok)
{
points_.release();
return std::string();
}
updatePointsResult(points_, points);
std::string decoded_info = decode(inarr, points, straight_qrcode);
return decoded_info;
}
std::string QRCodeDetector::detectAndDecodeCurved(InputArray in, OutputArray points,
OutputArray straight_qrcode) {
CV_Assert(p);
return std::dynamic_pointer_cast<ImplContour>(p)->detectAndDecodeCurved(in, points, straight_qrcode);
}
std::string ImplContour::detectAndDecodeCurved(InputArray in, OutputArray points_,
OutputArray straight_qrcode)
{
Mat inarr;
if (!checkQRInputImage(in, inarr))
{
points_.release();
return std::string();
}
vector<Point2f> points;
bool ok = detect(inarr, points);
if (!ok)
{
points_.release();
return std::string();
}
updatePointsResult(points_, points);
std::string decoded_info = decodeCurved(inarr, points, straight_qrcode);
return decoded_info;
}
class QRDetectMulti : public QRDetect
{
public:
void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
bool localization();
bool computeTransformationPoints(const size_t cur_ind);
vector< vector < Point2f > > getTransformationPoints() { return transformation_points;}
protected:
int findNumberLocalizationPoints(vector<Point2f>& tmp_localization_points);
void findQRCodeContours(vector<Point2f>& tmp_localization_points, vector< vector< Point2f > >& true_points_group, const int& num_qrcodes);
bool checkSets(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& true_points_group_copy,
vector<Point2f>& tmp_localization_points);
void deleteUsedPoints(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& loc,
vector<Point2f>& tmp_localization_points);
void fixationPoints(vector<Point2f> &local_point);
bool checkPoints(vector<Point2f> quadrangle_points);
bool checkPointsInsideQuadrangle(const vector<Point2f>& quadrangle_points);
bool checkPointsInsideTriangle(const vector<Point2f>& triangle_points);
Mat bin_barcode_fullsize, bin_barcode_temp;
vector<Point2f> not_resized_loc_points;
vector<Point2f> resized_loc_points;
vector< vector< Point2f > > localization_points, transformation_points;
struct compareDistanse_y
{
bool operator()(const Point2f& a, const Point2f& b) const
{
return a.y < b.y;
}
};
struct compareSquare
{
const vector<Point2f>& points;
compareSquare(const vector<Point2f>& points_) : points(points_) {}
bool operator()(const Vec3i& a, const Vec3i& b) const;
};
Mat original;
class ParallelSearch : public ParallelLoopBody
{
public:
ParallelSearch(vector< vector< Point2f > >& true_points_group_,
vector< vector< Point2f > >& loc_, int iter_, vector<int>& end_,
vector< vector< Vec3i > >& all_points_,
QRDetectMulti& cl_)
:
true_points_group(true_points_group_),
loc(loc_),
iter(iter_),
end(end_),
all_points(all_points_),
cl(cl_)
{
}
void operator()(const Range& range) const CV_OVERRIDE;
vector< vector< Point2f > >& true_points_group;
vector< vector< Point2f > >& loc;
int iter;
vector<int>& end;
vector< vector< Vec3i > >& all_points;
QRDetectMulti& cl;
};
};
void QRDetectMulti::ParallelSearch::operator()(const Range& range) const
{
for (int s = range.start; s < range.end; s++)
{
bool flag = false;
for (int r = iter; r < end[s]; r++)
{
if (flag)
break;
size_t x = iter + s;
size_t k = r - iter;
vector<Point2f> triangle;
for (int l = 0; l < 3; l++)
{
triangle.push_back(true_points_group[s][all_points[s][k][l]]);
}
if (cl.checkPointsInsideTriangle(triangle))
{
bool flag_for_break = false;
cl.fixationPoints(triangle);
if (triangle.size() == 3)
{
cl.localization_points[x] = triangle;
if (cl.purpose == cl.SHRINKING)
{
for (size_t j = 0; j < 3; j++)
{
cl.localization_points[x][j] *= cl.coeff_expansion;
}
}
else if (cl.purpose == cl.ZOOMING)
{
for (size_t j = 0; j < 3; j++)
{
cl.localization_points[x][j] /= cl.coeff_expansion;
}
}
for (size_t i = 0; i < 3; i++)
{
for (size_t j = i + 1; j < 3; j++)
{
if (norm(cl.localization_points[x][i] - cl.localization_points[x][j]) < 10)
{
cl.localization_points[x].clear();
flag_for_break = true;
break;
}
}
if (flag_for_break)
break;
}
if ((!flag_for_break)
&& (cl.localization_points[x].size() == 3)
&& (cl.computeTransformationPoints(x))
&& (cl.checkPointsInsideQuadrangle(cl.transformation_points[x]))
&& (cl.checkPoints(cl.transformation_points[x])))
{
for (int l = 0; l < 3; l++)
{
loc[s][all_points[s][k][l]].x = -1;
}
flag = true;
break;
}
}
if (flag)
{
break;
}
else
{
cl.transformation_points[x].clear();
cl.localization_points[x].clear();
}
}
}
}
}
void QRDetectMulti::init(const Mat& src, double eps_vertical_, double eps_horizontal_)
{
CV_TRACE_FUNCTION();
CV_Assert(!src.empty());
const double min_side = std::min(src.size().width, src.size().height);
if (min_side < 512.0)
{
purpose = ZOOMING;
coeff_expansion = 512.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR_EXACT);
}
else if (min_side > 512.0)
{
purpose = SHRINKING;
coeff_expansion = min_side / 512.0;
const int width = cvRound(src.size().width / coeff_expansion);
const int height = cvRound(src.size().height / coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_AREA);
}
else
{
purpose = UNCHANGED;
coeff_expansion = 1.0;
barcode = src.clone();
}
eps_vertical = eps_vertical_;
eps_horizontal = eps_horizontal_;
adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
adaptiveThreshold(src, bin_barcode_fullsize, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
}
void QRDetectMulti::fixationPoints(vector<Point2f> &local_point)
{
CV_TRACE_FUNCTION();
Point2f v0(local_point[1] - local_point[2]);
Point2f v1(local_point[0] - local_point[2]);
Point2f v2(local_point[1] - local_point[0]);
double cos_angles[3], norm_triangl[3];
norm_triangl[0] = norm(v0);
norm_triangl[1] = norm(v1);
norm_triangl[2] = norm(v2);
cos_angles[0] = v2.dot(-v1) / (norm_triangl[1] * norm_triangl[2]);
cos_angles[1] = v2.dot(v0) / (norm_triangl[0] * norm_triangl[2]);
cos_angles[2] = v1.dot(v0) / (norm_triangl[0] * norm_triangl[1]);
const double angle_barrier = 0.85;
if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier)
{
local_point.clear();
return;
}
size_t i_min_cos =
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
size_t index_max = 0;
double max_area = std::numeric_limits<double>::min();
for (size_t i = 0; i < local_point.size(); i++)
{
const size_t current_index = i % 3;
const size_t left_index = (i + 1) % 3;
const size_t right_index = (i + 2) % 3;
const Point2f current_point(local_point[current_index]);
const Point2f left_point(local_point[left_index]);
const Point2f right_point(local_point[right_index]);
const Point2f central_point(intersectionLines(
current_point,
Point2f(static_cast<float>((local_point[left_index].x + local_point[right_index].x) * 0.5),
static_cast<float>((local_point[left_index].y + local_point[right_index].y) * 0.5)),
Point2f(0, static_cast<float>(bin_barcode_temp.rows - 1)),
Point2f(static_cast<float>(bin_barcode_temp.cols - 1),
static_cast<float>(bin_barcode_temp.rows - 1))));
vector<Point2f> list_area_pnt;
list_area_pnt.push_back(current_point);
vector<LineIterator> list_line_iter;
list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, left_point));
list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, central_point));
list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, right_point));
for (size_t k = 0; k < list_line_iter.size(); k++)
{
LineIterator& li = list_line_iter[k];
uint8_t future_pixel = 255, count_index = 0;
for (int j = 0; j < li.count; j++, ++li)
{
Point p = li.pos();
if (p.x >= bin_barcode_temp.cols ||
p.y >= bin_barcode_temp.rows)
{
break;
}
const uint8_t value = bin_barcode_temp.at<uint8_t>(p);
if (value == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
count_index++;
if (count_index == 3)
{
list_area_pnt.push_back(p);
break;
}
}
}
}
const double temp_check_area = contourArea(list_area_pnt);
if (temp_check_area > max_area)
{
index_max = current_index;
max_area = temp_check_area;
}
}
if (index_max == i_min_cos)
{
std::swap(local_point[0], local_point[index_max]);
}
else
{
local_point.clear();
return;
}
const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
if (determinant(m) > 0)
{
std::swap(local_point[1], local_point[2]);
}
}
class BWCounter
{
size_t white;
size_t black;
public:
BWCounter(size_t b = 0, size_t w = 0) : white(w), black(b) {}
BWCounter& operator+=(const BWCounter& other) { black += other.black; white += other.white; return *this; }
void count1(uchar pixel) { if (pixel == 255) white++; else if (pixel == 0) black++; }
double getBWFraction() const { return white == 0 ? std::numeric_limits<double>::infinity() : double(black) / double(white); }
static BWCounter checkOnePair(const Point2f& tl, const Point2f& tr, const Point2f& bl, const Point2f& br, const Mat& img)
{
BWCounter res;
LineIterator li1(tl, tr), li2(bl, br);
for (int i = 0; i < li1.count && i < li2.count; i++, li1++, li2++)
{
LineIterator it(img, li1.pos(), li2.pos());
for (int r = 0; r < it.count; r++, it++)
res.count1(img.at<uchar>(it.pos()));
}
return res;
}
};
bool QRDetectMulti::checkPoints(vector<Point2f> quadrangle)
{
if (quadrangle.size() != 4)
return false;
std::sort(quadrangle.begin(), quadrangle.end(), compareDistanse_y());
BWCounter s;
s += BWCounter::checkOnePair(quadrangle[1], quadrangle[0], quadrangle[2], quadrangle[0], bin_barcode);
s += BWCounter::checkOnePair(quadrangle[1], quadrangle[3], quadrangle[2], quadrangle[3], bin_barcode);
const double frac = s.getBWFraction();
return frac > 0.76 && frac < 1.24;
}
bool QRDetectMulti::checkPointsInsideQuadrangle(const vector<Point2f>& quadrangle_points)
{
if (quadrangle_points.size() != 4)
return false;
int count = 0;
for (size_t i = 0; i < not_resized_loc_points.size(); i++)
{
if (pointPolygonTest(quadrangle_points, not_resized_loc_points[i], true) > 0)
{
count++;
}
}
if (count == 3)
return true;
else
return false;
}
bool QRDetectMulti::checkPointsInsideTriangle(const vector<Point2f>& triangle_points)
{
if (triangle_points.size() != 3)
return false;
double eps = 3;
for (size_t i = 0; i < resized_loc_points.size(); i++)
{
if (pointPolygonTest( triangle_points, resized_loc_points[i], true ) > 0)
{
if ((abs(resized_loc_points[i].x - triangle_points[0].x) > eps)
&& (abs(resized_loc_points[i].x - triangle_points[1].x) > eps)
&& (abs(resized_loc_points[i].x - triangle_points[2].x) > eps))
{
return false;
}
}
}
return true;
}
bool QRDetectMulti::compareSquare::operator()(const Vec3i& a, const Vec3i& b) const
{
Point2f a0 = points[a[0]];
Point2f a1 = points[a[1]];
Point2f a2 = points[a[2]];
Point2f b0 = points[b[0]];
Point2f b1 = points[b[1]];
Point2f b2 = points[b[2]];
return fabs((a1.x - a0.x) * (a2.y - a0.y) - (a2.x - a0.x) * (a1.y - a0.y)) <
fabs((b1.x - b0.x) * (b2.y - b0.y) - (b2.x - b0.x) * (b1.y - b0.y));
}
int QRDetectMulti::findNumberLocalizationPoints(vector<Point2f>& tmp_localization_points)
{
size_t number_possible_purpose = 1;
if (purpose == SHRINKING)
number_possible_purpose = 2;
Mat tmp_shrinking = bin_barcode;
int tmp_num_points = 0;
int num_points = -1;
for (eps_horizontal = 0.1; eps_horizontal < 0.4; eps_horizontal += 0.1)
{
tmp_num_points = 0;
num_points = -1;
if (purpose == SHRINKING)
number_possible_purpose = 2;
else
number_possible_purpose = 1;
for (size_t k = 0; k < number_possible_purpose; k++)
{
if (k == 1)
bin_barcode = bin_barcode_fullsize;
vector<Vec3d> list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
{
if (k == 0)
{
k = 1;
bin_barcode = bin_barcode_fullsize;
list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
break;
}
else
break;
}
vector<Point2f> list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
if (list_lines_y.size() < 3)
{
if (k == 0)
{
k = 1;
bin_barcode = bin_barcode_fullsize;
list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
break;
list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
if (list_lines_y.size() < 3)
break;
}
else
break;
}
vector<int> index_list_lines_y;
for (size_t i = 0; i < list_lines_y.size(); i++)
index_list_lines_y.push_back(-1);
num_points = 0;
for (size_t i = 0; i < list_lines_y.size() - 1; i++)
{
for (size_t j = i; j < list_lines_y.size(); j++ )
{
double points_distance = norm(list_lines_y[i] - list_lines_y[j]);
if (points_distance <= 10)
{
if ((index_list_lines_y[i] == -1) && (index_list_lines_y[j] == -1))
{
index_list_lines_y[i] = num_points;
index_list_lines_y[j] = num_points;
num_points++;
}
else if (index_list_lines_y[i] != -1)
index_list_lines_y[j] = index_list_lines_y[i];
else if (index_list_lines_y[j] != -1)
index_list_lines_y[i] = index_list_lines_y[j];
}
}
}
for (size_t i = 0; i < index_list_lines_y.size(); i++)
{
if (index_list_lines_y[i] == -1)
{
index_list_lines_y[i] = num_points;
num_points++;
}
}
if ((tmp_num_points < num_points) && (k == 1))
{
purpose = UNCHANGED;
tmp_num_points = num_points;
bin_barcode = bin_barcode_fullsize;
coeff_expansion = 1.0;
}
if ((tmp_num_points < num_points) && (k == 0))
{
tmp_num_points = num_points;
}
}
if ((tmp_num_points < 3) && (tmp_num_points >= 1))
{
const double min_side = std::min(bin_barcode_fullsize.size().width, bin_barcode_fullsize.size().height);
if (min_side > 512)
{
bin_barcode = tmp_shrinking;
purpose = SHRINKING;
coeff_expansion = min_side / 512.0;
}
if (min_side < 512)
{
bin_barcode = tmp_shrinking;
purpose = ZOOMING;
coeff_expansion = 512 / min_side;
}
}
else
break;
}
if (purpose == SHRINKING)
bin_barcode = tmp_shrinking;
num_points = tmp_num_points;
vector<Vec3d> list_lines_x = searchHorizontalLines();
if (list_lines_x.empty())
return num_points;
vector<Point2f> list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal);
if (list_lines_y.size() < 3)
return num_points;
if (num_points < 3)
return num_points;
Mat labels;
kmeans(list_lines_y, num_points, labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
num_points, KMEANS_PP_CENTERS, tmp_localization_points);
bin_barcode_temp = bin_barcode.clone();
if (purpose == SHRINKING)
{
const int width = cvRound(bin_barcode.size().width * coeff_expansion);
const int height = cvRound(bin_barcode.size().height * coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT);
bin_barcode = intermediate.clone();
}
else if (purpose == ZOOMING)
{
const int width = cvRound(bin_barcode.size().width / coeff_expansion);
const int height = cvRound(bin_barcode.size().height / coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT);
bin_barcode = intermediate.clone();
}
else
{
bin_barcode = bin_barcode_fullsize.clone();
}
return num_points;
}
void QRDetectMulti::findQRCodeContours(vector<Point2f>& tmp_localization_points,
vector< vector< Point2f > >& true_points_group, const int& num_qrcodes)
{
Mat gray, blur_image, threshold_output;
Mat bar = barcode;
const int width = cvRound(bin_barcode.size().width);
const int height = cvRound(bin_barcode.size().height);
Size new_size(width, height);
resize(bar, bar, new_size, 0, 0, INTER_LINEAR_EXACT);
blur(bar, blur_image, Size(3, 3));
threshold(blur_image, threshold_output, 50, 255, THRESH_BINARY);
vector< vector< Point > > contours;
vector<Vec4i> hierarchy;
findContours(threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<Point2f> all_contours_points;
for (size_t i = 0; i < contours.size(); i++)
{
for (size_t j = 0; j < contours[i].size(); j++)
{
all_contours_points.push_back(contours[i][j]);
}
}
Mat qrcode_labels;
vector<Point2f> clustered_localization_points;
int count_contours = num_qrcodes;
if (all_contours_points.size() < size_t(num_qrcodes))
count_contours = (int)all_contours_points.size();
kmeans(all_contours_points, count_contours, qrcode_labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
count_contours, KMEANS_PP_CENTERS, clustered_localization_points);
vector< vector< Point2f > > qrcode_clusters(count_contours);
for (int i = 0; i < count_contours; i++)
for (int j = 0; j < int(all_contours_points.size()); j++)
{
if (qrcode_labels.at<int>(j, 0) == i)
{
qrcode_clusters[i].push_back(all_contours_points[j]);
}
}
vector< vector< Point2f > > hull(count_contours);
for (size_t i = 0; i < qrcode_clusters.size(); i++)
convexHull(Mat(qrcode_clusters[i]), hull[i]);
not_resized_loc_points = tmp_localization_points;
resized_loc_points = tmp_localization_points;
if (purpose == SHRINKING)
{
for (size_t j = 0; j < not_resized_loc_points.size(); j++)
{
not_resized_loc_points[j] *= coeff_expansion;
}
}
else if (purpose == ZOOMING)
{
for (size_t j = 0; j < not_resized_loc_points.size(); j++)
{
not_resized_loc_points[j] /= coeff_expansion;
}
}
true_points_group.resize(hull.size());
for (size_t j = 0; j < hull.size(); j++)
{
for (size_t i = 0; i < not_resized_loc_points.size(); i++)
{
if (pointPolygonTest(hull[j], not_resized_loc_points[i], true) > 0)
{
true_points_group[j].push_back(tmp_localization_points[i]);
tmp_localization_points[i].x = -1;
}
}
}
vector<Point2f> copy;
for (size_t j = 0; j < tmp_localization_points.size(); j++)
{
if (tmp_localization_points[j].x != -1)
copy.push_back(tmp_localization_points[j]);
}
tmp_localization_points = copy;
}
bool QRDetectMulti::checkSets(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& true_points_group_copy,
vector<Point2f>& tmp_localization_points)
{
for (size_t i = 0; i < true_points_group.size(); i++)
{
if (true_points_group[i].size() < 3)
{
for (size_t j = 0; j < true_points_group[i].size(); j++)
tmp_localization_points.push_back(true_points_group[i][j]);
true_points_group[i].clear();
}
}
vector< vector< Point2f > > temp_for_copy;
for (size_t i = 0; i < true_points_group.size(); i++)
{
if (true_points_group[i].size() != 0)
temp_for_copy.push_back(true_points_group[i]);
}
true_points_group = temp_for_copy;
if (true_points_group.size() == 0)
{
true_points_group.push_back(tmp_localization_points);
tmp_localization_points.clear();
}
if (true_points_group.size() == 0)
return false;
if (true_points_group[0].size() < 3)
return false;
vector<int> set_size(true_points_group.size());
for (size_t i = 0; i < true_points_group.size(); i++)
{
set_size[i] = int( (true_points_group[i].size() - 2 ) * (true_points_group[i].size() - 1) * true_points_group[i].size()) / 6;
}
vector< vector< Vec3i > > all_points(true_points_group.size());
for (size_t i = 0; i < true_points_group.size(); i++)
all_points[i].resize(set_size[i]);
int cur_cluster = 0;
for (size_t i = 0; i < true_points_group.size(); i++)
{
cur_cluster = 0;
for (size_t l = 0; l < true_points_group[i].size() - 2; l++)
for (size_t j = l + 1; j < true_points_group[i].size() - 1; j++)
for (size_t k = j + 1; k < true_points_group[i].size(); k++)
{
all_points[i][cur_cluster][0] = int(l);
all_points[i][cur_cluster][1] = int(j);
all_points[i][cur_cluster][2] = int(k);
cur_cluster++;
}
}
for (size_t i = 0; i < true_points_group.size(); i++)
{
std::sort(all_points[i].begin(), all_points[i].end(), compareSquare(true_points_group[i]));
}
if (true_points_group.size() == 1)
{
int check_number = 35;
if (set_size[0] > check_number)
set_size[0] = check_number;
all_points[0].resize(set_size[0]);
}
int iter = (int)localization_points.size();
localization_points.resize(iter + true_points_group.size());
transformation_points.resize(iter + true_points_group.size());
true_points_group_copy = true_points_group;
vector<int> end(true_points_group.size());
for (size_t i = 0; i < true_points_group.size(); i++)
end[i] = iter + set_size[i];
ParallelSearch parallelSearch(true_points_group,
true_points_group_copy, iter, end, all_points, *this);
parallel_for_(Range(0, (int)true_points_group.size()), parallelSearch);
return true;
}
void QRDetectMulti::deleteUsedPoints(vector<vector<Point2f> >& true_points_group, vector<vector<Point2f> >& loc,
vector<Point2f>& tmp_localization_points)
{
size_t iter = localization_points.size() - true_points_group.size() ;
for (size_t s = 0; s < true_points_group.size(); s++)
{
if (localization_points[iter + s].empty())
loc[s][0].x = -2;
if (loc[s].size() == 3)
{
if ((true_points_group.size() > 1) || ((true_points_group.size() == 1) && (tmp_localization_points.size() != 0)) )
{
for (size_t j = 0; j < true_points_group[s].size(); j++)
{
if (loc[s][j].x != -1)
{
loc[s][j].x = -1;
tmp_localization_points.push_back(true_points_group[s][j]);
}
}
}
}
vector<Point2f> for_copy;
for (size_t j = 0; j < loc[s].size(); j++)
{
if ((loc[s][j].x != -1) && (loc[s][j].x != -2) )
{
for_copy.push_back(true_points_group[s][j]);
}
if ((loc[s][j].x == -2) && (true_points_group.size() > 1))
{
tmp_localization_points.push_back(true_points_group[s][j]);
}
}
true_points_group[s] = for_copy;
}
vector< vector< Point2f > > for_copy_loc;
vector< vector< Point2f > > for_copy_trans;
for (size_t i = 0; i < localization_points.size(); i++)
{
if ((localization_points[i].size() == 3) && (transformation_points[i].size() == 4))
{
for_copy_loc.push_back(localization_points[i]);
for_copy_trans.push_back(transformation_points[i]);
}
}
localization_points = for_copy_loc;
transformation_points = for_copy_trans;
}
bool QRDetectMulti::localization()
{
CV_TRACE_FUNCTION();
vector<Point2f> tmp_localization_points;
int num_points = findNumberLocalizationPoints(tmp_localization_points);
if (num_points < 3)
return false;
int num_qrcodes = divUp(num_points, 3);
vector<vector<Point2f> > true_points_group;
findQRCodeContours(tmp_localization_points, true_points_group, num_qrcodes);
for (int q = 0; q < num_qrcodes; q++)
{
vector<vector<Point2f> > loc;
size_t iter = localization_points.size();
if (!checkSets(true_points_group, loc, tmp_localization_points))
break;
deleteUsedPoints(true_points_group, loc, tmp_localization_points);
if ((localization_points.size() - iter) == 1)
q--;
if (((localization_points.size() - iter) == 0) && (tmp_localization_points.size() == 0) && (true_points_group.size() == 1) )
break;
}
if ((transformation_points.size() == 0) || (localization_points.size() == 0))
return false;
return true;
}
bool QRDetectMulti::computeTransformationPoints(const size_t cur_ind)
{
CV_TRACE_FUNCTION();
if (localization_points[cur_ind].size() != 3)
{
return false;
}
vector<Point> locations, non_zero_elem[3], newHull;
vector<Point2f> new_non_zero_elem[3];
for (size_t i = 0; i < 3 ; i++)
{
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
uint8_t next_pixel, future_pixel = 255;
int localization_point_x = cvRound(localization_points[cur_ind][i].x);
int localization_point_y = cvRound(localization_points[cur_ind][i].y);
int count_test_lines = 0, index = localization_point_x;
for (; index < bin_barcode.cols - 1; index++)
{
next_pixel = bin_barcode.at<uint8_t>(localization_point_y, index + 1);
if (next_pixel == future_pixel)
{
future_pixel = static_cast<uint8_t>(~future_pixel);
count_test_lines++;
if (count_test_lines == 2)
{
// TODO avoid drawing functions
floodFill(bin_barcode, mask,
Point(index + 1, localization_point_y), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
break;
}
}
}
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
findNonZero(mask_roi, non_zero_elem[i]);
newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
}
convexHull(newHull, locations);
for (size_t i = 0; i < locations.size(); i++)
{
for (size_t j = 0; j < 3; j++)
{
for (size_t k = 0; k < non_zero_elem[j].size(); k++)
{
if (locations[i] == non_zero_elem[j][k])
{
new_non_zero_elem[j].push_back(locations[i]);
}
}
}
}
if (new_non_zero_elem[0].size() == 0)
return false;
double pentagon_diag_norm = -1;
Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
{
double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
if (temp_norm > pentagon_diag_norm)
{
down_left_edge_point = new_non_zero_elem[1][i];
up_right_edge_point = new_non_zero_elem[2][j];
pentagon_diag_norm = temp_norm;
}
}
}
if (down_left_edge_point == Point2f(0, 0) ||
up_right_edge_point == Point2f(0, 0))
{
return false;
}
double max_area = -1;
up_left_edge_point = new_non_zero_elem[0][0];
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
{
vector<Point2f> list_edge_points;
list_edge_points.push_back(new_non_zero_elem[0][i]);
list_edge_points.push_back(down_left_edge_point);
list_edge_points.push_back(up_right_edge_point);
double temp_area = fabs(contourArea(list_edge_points));
if (max_area < temp_area)
{
up_left_edge_point = new_non_zero_elem[0][i];
max_area = temp_area;
}
}
Point2f down_max_delta_point, up_max_delta_point;
double norm_down_max_delta = -1, norm_up_max_delta = -1;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i]) + norm(down_left_edge_point - new_non_zero_elem[1][i]);
if (norm_down_max_delta < temp_norm_delta)
{
down_max_delta_point = new_non_zero_elem[1][i];
norm_down_max_delta = temp_norm_delta;
}
}
for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i]) + norm(up_right_edge_point - new_non_zero_elem[2][i]);
if (norm_up_max_delta < temp_norm_delta)
{
up_max_delta_point = new_non_zero_elem[2][i];
norm_up_max_delta = temp_norm_delta;
}
}
vector<Point2f> tmp_transformation_points;
tmp_transformation_points.push_back(down_left_edge_point);
tmp_transformation_points.push_back(up_left_edge_point);
tmp_transformation_points.push_back(up_right_edge_point);
tmp_transformation_points.push_back(intersectionLines(
down_left_edge_point, down_max_delta_point,
up_right_edge_point, up_max_delta_point));
transformation_points[cur_ind] = tmp_transformation_points;
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points[cur_ind]);
transformation_points[cur_ind] = quadrilateral;
return true;
}
bool ImplContour::detectMulti(InputArray in, OutputArray points) const {
Mat gray;
if (!checkQRInputImage(in, gray)) {
points.release();
return false;
}
vector<Point2f> result;
QRDetectMulti qrdet;
qrdet.init(gray, epsX, epsY);
if (!qrdet.localization()) {
points.release();
return false;
}
vector<vector<Point2f> > pnts2f = qrdet.getTransformationPoints();
for(size_t i = 0; i < pnts2f.size(); i++)
for(size_t j = 0; j < pnts2f[i].size(); j++)
result.push_back(pnts2f[i][j]);
if (result.size() >= 4) {
updatePointsResult(points, result);
return true;
}
return false;
}
class ParallelDecodeProcess : public ParallelLoopBody
{
public:
ParallelDecodeProcess(Mat& inarr_, vector<QRDecode>& qrdec_, vector<std::string>& decoded_info_,
vector<Mat>& straight_barcode_, vector< vector< Point2f > >& src_points_)
: inarr(inarr_), qrdec(qrdec_), decoded_info(decoded_info_)
, straight_barcode(straight_barcode_), src_points(src_points_)
{
// nothing
}
void operator()(const Range& range) const CV_OVERRIDE
{
for (int i = range.start; i < range.end; i++)
{
qrdec[i].init(inarr, src_points[i]);
bool ok = qrdec[i].straightDecodingProcess();
if (ok)
{
decoded_info[i] = qrdec[i].getDecodeInformation();
straight_barcode[i] = qrdec[i].getStraightBarcode();
}
else if (std::min(inarr.size().width, inarr.size().height) > 512)
{
const int min_side = std::min(inarr.size().width, inarr.size().height);
qrdec[i].coeff_expansion = min_side / 512.f;
const int width = cvRound(inarr.size().width / qrdec[i].coeff_expansion);
const int height = cvRound(inarr.size().height / qrdec[i].coeff_expansion);
Size new_size(width, height);
Mat inarr2;
resize(inarr, inarr2, new_size, 0, 0, INTER_AREA);
for (size_t j = 0ull; j < 4ull; j++)
{
src_points[i][j] /= qrdec[i].coeff_expansion;
}
qrdec[i].init(inarr2, src_points[i]);
ok = qrdec[i].straightDecodingProcess();
if (ok)
{
decoded_info[i] = qrdec[i].getDecodeInformation();
straight_barcode[i] = qrdec[i].getStraightBarcode();
for (size_t j = 0ull; j < qrdec[i].alignment_coords.size(); j++)
qrdec[i].alignment_coords[j] *= qrdec[i].coeff_expansion;
}
}
if (decoded_info[i].empty())
decoded_info[i] = "";
}
}
private:
Mat& inarr;
vector<QRDecode>& qrdec;
vector<std::string>& decoded_info;
vector<Mat>& straight_barcode;
vector< vector< Point2f > >& src_points;
};
bool ImplContour::decodeMulti(
InputArray img,
InputArray points,
CV_OUT std::vector<cv::String>& decoded_info,
OutputArrayOfArrays straight_qrcode
) const
{
Mat inarr;
if (!checkQRInputImage(img, inarr))
return false;
CV_Assert(points.size().width > 0);
CV_Assert((points.size().width % 4) == 0);
vector< vector< Point2f > > src_points ;
Mat qr_points = points.getMat();
qr_points = qr_points.reshape(2, 1);
for (int i = 0; i < qr_points.size().width ; i += 4)
{
vector<Point2f> tempMat = qr_points.colRange(i, i + 4);
if (contourArea(tempMat) > 0.0)
{
src_points.push_back(tempMat);
}
}
CV_Assert(src_points.size() > 0);
vector<QRDecode> qrdec(src_points.size(), useAlignmentMarkers);
vector<Mat> straight_barcode(src_points.size());
vector<std::string> info(src_points.size());
ParallelDecodeProcess parallelDecodeProcess(inarr, qrdec, info, straight_barcode, src_points);
parallel_for_(Range(0, int(src_points.size())), parallelDecodeProcess);
vector<Mat> for_copy;
for (size_t i = 0; i < straight_barcode.size(); i++)
{
if (!(straight_barcode[i].empty()))
for_copy.push_back(straight_barcode[i]);
}
straight_barcode = for_copy;
if (straight_qrcode.needed() && straight_barcode.size() == 0)
{
straight_qrcode.release();
}
else if (straight_qrcode.needed())
{
straight_qrcode.create(Size((int)straight_barcode.size(), 1), CV_8UC1);
vector<Mat> tmp_straight_qrcodes(straight_barcode.size());
for (size_t i = 0; i < straight_barcode.size(); i++)
{
straight_barcode[i].convertTo(tmp_straight_qrcodes[i], CV_8UC1);
}
straight_qrcode.assign(tmp_straight_qrcodes);
}
decoded_info.clear();
for (size_t i = 0; i < info.size(); i++)
{
decoded_info.push_back(info[i]);
}
alignmentMarkers.resize(src_points.size());
updateQrCorners.resize(src_points.size()*4ull);
for (size_t i = 0ull; i < src_points.size(); i++) {
alignmentMarkers[i] = qrdec[i].alignment_coords;
for (size_t j = 0ull; j < 4ull; j++)
updateQrCorners[i*4ull+j] = qrdec[i].getOriginalPoints()[j] * qrdec[i].coeff_expansion;
}
if (!decoded_info.empty())
return true;
else
return false;
}
bool ImplContour::detectAndDecodeMulti(
InputArray img,
CV_OUT std::vector<cv::String>& decoded_info,
OutputArray points_,
OutputArrayOfArrays straight_qrcode
) const
{
Mat inarr;
if (!checkQRInputImage(img, inarr))
{
points_.release();
return false;
}
vector<Point2f> points;
bool ok = detectMulti(inarr, points);
if (!ok)
{
points_.release();
return false;
}
updatePointsResult(points_, points);
decoded_info.clear();
ok = decodeMulti(inarr, points, decoded_info, straight_qrcode);
updatePointsResult(points_, updateQrCorners);
return ok;
}
QRCodeDetector& QRCodeDetector::setUseAlignmentMarkers(bool useAlignmentMarkers) {
(std::dynamic_pointer_cast<ImplContour>)(p)->useAlignmentMarkers = useAlignmentMarkers;
return *this;
}
QRCodeDetectorAruco::Params::Params() {
minModuleSizeInPyramid = 4.f;
maxRotation = (float)CV_PI/12.f;
maxModuleSizeMismatch = 1.75f;
maxTimingPatternMismatch = 2.f;
maxPenalties = 0.4f;
maxColorsMismatch = 0.2f;
scaleTimingPatternScore = 0.9f;
}
namespace {
struct FinderPatternInfo {
FinderPatternInfo() {}
FinderPatternInfo(const vector<Point2f>& patternPoints): points(patternPoints) {
float minSin = 1.f;
for (int i = 0; i < 4; i++) {
center += points[i];
const Point2f side = points[i]-points[(i+1) % 4];
const float lenSide = sqrt(normL2Sqr<float>(side));
minSin = min(minSin, abs(side.y) / lenSide);
moduleSize += lenSide;
}
moduleSize /= (4.f * 7.f); // 4 sides, 7 modules in one side
center /= 4.f;
minQrAngle = asin(minSin);
}
enum TypePattern {
CENTER,
RIGHT,
BOTTOM,
NONE
};
void setType(const TypePattern& _typePattern, const Point2f& centerQR) {
typePattern = _typePattern;
float bestLen = normL2Sqr<float>(centerQR - points[0]);
int id = 0;
for (int i = 1; i < 4; i++) {
float len = normL2Sqr<float>(centerQR - points[i]);
if (len < bestLen) {
bestLen = len;
id = i;
}
}
innerCornerId = id;
}
Point2f getDirectionTo(const TypePattern& other) const {
Point2f res = points[innerCornerId];
if (typePattern == TypePattern::CENTER) {
if (other == TypePattern::RIGHT) {
res -= points[(innerCornerId + 1) % 4];
res = 0.5f*(res + points[(innerCornerId + 3) % 4] - points[(innerCornerId + 2) % 4]);
}
else if (other == TypePattern::BOTTOM) {
res -= points[(innerCornerId + 3) % 4];
res = 0.5f*(res + points[(innerCornerId + 1) % 4] - points[(innerCornerId + 2) % 4]);
}
}
else if (typePattern == TypePattern::RIGHT && other == TypePattern::CENTER) {
res = res - points[(innerCornerId + 3) % 4];
res = 0.5f*(res + points[(innerCornerId + 1) % 4] - points[(innerCornerId + 2) % 4]);
}
else if (typePattern == TypePattern::BOTTOM && other == TypePattern::CENTER) {
res = res - points[(innerCornerId + 1) % 4];
res = 0.5f*(res + points[(innerCornerId + 3) % 4] - points[(innerCornerId + 2) % 4]);
}
return res;
}
bool checkTriangleAngle(const FinderPatternInfo& patternRight, const FinderPatternInfo& patternBottom, const float length2Vec) {
// check the triangle angle btw right & center & bootom sides of QR code
// the triangle angle shoud be between 30 and 150 degrees
// abs(pi/2 - triangle_angle) should be less 60 degrees
const float angle = abs((float)CV_PI/2.f - acos((center - patternRight.center).dot((center - patternBottom.center)) / length2Vec));
const float maxTriangleDeltaAngle = (float)CV_PI / 3.f;
if (angle > maxTriangleDeltaAngle) {
return false;
}
return true;
}
bool checkAngle(const FinderPatternInfo& other, const float maxRotation) {
Point2f toOther = getDirectionTo(other.typePattern);
Point2f toThis = other.getDirectionTo(typePattern);
const float cosAngle = getCosAngle(toOther, toThis);
if (cosAngle < 0.f && (CV_PI - acos(cosAngle)) / 2.f < maxRotation) {
const float angleCenter = max(acos(getCosAngle(toOther, other.center - center)), acos(getCosAngle(toThis, center - other.center)));
if (angleCenter < maxRotation)
return true;
}
return false;
}
static float getCosAngle(const Point2f& vec1, const Point2f& vec2) {
float cosAngle = vec1.dot(vec2) / (sqrt(normL2Sqr<float>(vec1)) * sqrt(normL2Sqr<float>(vec2)));
cosAngle = std::max(-1.f, cosAngle);
cosAngle = std::min(1.f, cosAngle);
return cosAngle;
}
pair<int, Point2f> getQRCorner() const {
if (typePattern == TypePattern::CENTER) {
int id = (innerCornerId + 2) % 4;
return std::make_pair(id, points[id]);
}
else if (typePattern != TypePattern::NONE) {
int id = (innerCornerId + 2) % 4;
return std::make_pair(id, points[id]);
}
return std::make_pair(-1, Point2f());
}
pair<int, Point2f> getCornerForIntersection() const {
if (typePattern == TypePattern::RIGHT) {
int id = (innerCornerId + 3) % 4;
return std::make_pair(id, points[id]);
}
else if (typePattern == TypePattern::BOTTOM) {
int id = (innerCornerId + 1) % 4;
return std::make_pair(id, points[id]);
}
return std::make_pair(-1, Point2f());
}
Point2f getTimingStart(TypePattern direction) const {
const float timingStartPosition = .5f;
const float patternLength = 7.f;
Point2f start = points[innerCornerId]*((patternLength - timingStartPosition)/patternLength);
if (typePattern == TypePattern::CENTER && direction == TypePattern::RIGHT) {
start += points[(innerCornerId + 3) % 4]*(timingStartPosition/patternLength);
}
else if (typePattern == TypePattern::CENTER && direction == TypePattern::BOTTOM) {
start += points[(innerCornerId + 1) % 4]*(timingStartPosition/patternLength);
}
else if (typePattern == TypePattern::RIGHT && direction == TypePattern::CENTER) {
start += points[(innerCornerId + 1) % 4]*(timingStartPosition/patternLength);
}
else if (typePattern == TypePattern::BOTTOM && direction == TypePattern::CENTER) {
start += points[(innerCornerId + 3) % 4]*(timingStartPosition/patternLength);
}
return start + getDirectionTo(direction)/(patternLength*2.f);
}
// return total white+black modules in timing pattern, total white modules, penaltyPoints
Point3i getTimingPatternScore(const Point2f& start, const Point2f& end, Mat &img, const float maxTimingPatternMismatch) const {
Rect imageRect(Point(), img.size());
int penaltyPoints = 0;
int colorCounters[2] = {0, 0};
if (imageRect.contains(Point(cvRound(end.x), cvRound(end.y)))) {
LineIterator lineIterator(start, end);
uint8_t prevValue = img.at<uint8_t>(lineIterator.pos());
vector<Point> vec = {lineIterator.pos()};
// the starting position in the timing pattern is the white module white module next to the finder pattern.
bool whiteColor = true;
lineIterator++;
colorCounters[whiteColor]++;
for(int i = 1; i < lineIterator.count; i++, ++lineIterator) {
const uint8_t value = img.at<uint8_t>(lineIterator.pos());
if (prevValue != value) {
const float dist = sqrt(normL2Sqr<float>((Point2f)(vec.back()-lineIterator.pos())));
// check long and short lines in timing pattern
const float relativeDiff = max(moduleSize, dist)/min(moduleSize, dist);
if (relativeDiff > maxTimingPatternMismatch) {
if (dist < moduleSize || relativeDiff < maxTimingPatternMismatch*8.f)
penaltyPoints++;
else
penaltyPoints += cvRound(relativeDiff);
}
vec.push_back(lineIterator.pos());
prevValue = value;
whiteColor ^= true;
colorCounters[whiteColor]++;
}
}
}
return Point3i(colorCounters[0] + colorCounters[1], colorCounters[1], penaltyPoints);
}
FinderPatternInfo& operator*=(const float scale) {
moduleSize *= scale;
center *= scale;
for (auto& point: points)
point *= scale;
return *this;
}
float moduleSize = 0.f;
// Index of inner QR corner.
// The inner corner is the corner closest to the center of the QR code.
int innerCornerId = 0;
float minQrAngle = 0.f;
TypePattern typePattern = NONE;
Point2f center;
vector<Point2f> points;
};
struct QRCode {
QRCode() {}
QRCode(const FinderPatternInfo& _centerPattern, const FinderPatternInfo& _rightPattern, const FinderPatternInfo& _bottomPattern,
Point2f _center, float dist): centerPattern(_centerPattern), rightPattern(_rightPattern), bottomPattern(_bottomPattern),
center(_center), distance(dist) {
moduleSize = (centerPattern.moduleSize + rightPattern.moduleSize + bottomPattern.moduleSize) / 3.f;
}
vector<Point2f> getQRCorners() const {
Point2f a1 = rightPattern.getQRCorner().second;
Point2f a2 = rightPattern.getCornerForIntersection().second;
Point2f b1 = bottomPattern.getQRCorner().second;
Point2f b2 = bottomPattern.getCornerForIntersection().second;
Point2f rightBottom = intersectionLines(a1, a2, b1, b2);
return {centerPattern.getQRCorner().second, rightPattern.getQRCorner().second, rightBottom, bottomPattern.getQRCorner().second};
}
static QRCode checkCompatibilityPattern(const FinderPatternInfo &_pattern1, const FinderPatternInfo& _pattern2, const FinderPatternInfo& _pattern3,
Point3i& index, const QRCodeDetectorAruco::Params& qrDetectorParameters) {
FinderPatternInfo pattern1 = _pattern1, pattern2 = _pattern2, pattern3 = _pattern3;
Point2f centerQR;
float distance = std::numeric_limits<float>::max();
if (abs(pattern1.minQrAngle - pattern2.minQrAngle) > qrDetectorParameters.maxRotation ||
abs(pattern1.minQrAngle - pattern3.minQrAngle) > qrDetectorParameters.maxRotation) // check maxRotation
return QRCode(pattern1, pattern2, pattern3, centerQR, distance);
if (max(pattern1.moduleSize, pattern2.moduleSize) / min(pattern1.moduleSize, pattern2.moduleSize) > qrDetectorParameters.maxModuleSizeMismatch ||
max(pattern1.moduleSize, pattern3.moduleSize) / min(pattern1.moduleSize, pattern3.moduleSize) > qrDetectorParameters.maxModuleSizeMismatch)
return QRCode(pattern1, pattern2, pattern3, centerQR, distance);
// QR code:
// center right
// 1 ________ 2
// |_| |_|
// | / |
// | / |
// | / |
// |_ / |
// |_|______|
// 4
// bottom
// sides length check
const float side1 = sqrt(normL2Sqr<float>(pattern1.center - pattern2.center));
const float side2 = sqrt(normL2Sqr<float>(pattern1.center - pattern3.center));
const float side3 = sqrt(normL2Sqr<float>(pattern2.center - pattern3.center));
std::array<float, 3> sides = {side1, side2, side3};
std::sort(sides.begin(), sides.end());
// check sides diff
if (sides[1] / sides[0] < qrDetectorParameters.maxModuleSizeMismatch) {
// find center pattern
if (side1 > side2 && side1 > side3) { // centerPattern is pattern3
std::swap(pattern3, pattern1); // now pattern1 is centerPattern
std::swap(index.x, index.z);
}
else if (side2 > side1 && side2 > side3) { // centerPattern is pattern2
std::swap(pattern2, pattern1); // now pattern1 is centerPattern
std::swap(index.x, index.y);
}
// now pattern1 is centerPattern
centerQR = (pattern2.center + pattern3.center) / 2.f;
pattern1.setType(FinderPatternInfo::TypePattern::CENTER, centerQR);
// check triangle angle
if (pattern1.checkTriangleAngle(pattern2, pattern3, sides[0]*sides[1]) == false)
return QRCode(pattern1, pattern2, pattern3, centerQR, distance);
// check that pattern2 is right
pattern2.setType(FinderPatternInfo::TypePattern::RIGHT, centerQR);
bool ok = pattern1.checkAngle(pattern2, qrDetectorParameters.maxRotation);
if (!ok) {
// check that pattern3 is right
pattern3.setType(FinderPatternInfo::TypePattern::RIGHT, centerQR);
ok = pattern1.checkAngle(pattern3, qrDetectorParameters.maxRotation);
if (ok) {
std::swap(pattern3, pattern2); // now pattern2 is rightPattern
std::swap(index.y, index.z);
}
}
if (ok) {
// check that pattern3 is bottom
pattern3.setType(FinderPatternInfo::TypePattern::BOTTOM, centerQR);
ok = pattern1.checkAngle(pattern3, qrDetectorParameters.maxRotation);
if (ok) {
// intersection check
Point2f c1 = intersectionLines(pattern1.getQRCorner().second, pattern1.points[pattern1.innerCornerId],
pattern2.getQRCorner().second, pattern2.points[pattern2.innerCornerId]);
Point2f c2 = intersectionLines(pattern1.getQRCorner().second, pattern1.points[pattern1.innerCornerId],
pattern3.getQRCorner().second, pattern3.points[pattern3.innerCornerId]);
const float centerDistance = sqrt(normL2Sqr<float>(c1 - c2));
distance = (sides[0] + sides[1] + centerDistance)*(sides[1] / sides[0]);
}
}
}
QRCode qrcode(pattern1, pattern2, pattern3, centerQR, distance);
return qrcode;
}
int calculateScoreByTimingPattern(Mat &img, const QRCodeDetectorAruco::Params& params) {
const int minModulesInTimingPattern = 4;
const Point3i v1 = centerPattern.getTimingPatternScore(rightPattern.getTimingStart(FinderPatternInfo::CENTER),
centerPattern.getTimingStart(FinderPatternInfo::RIGHT), img,
params.maxTimingPatternMismatch);
if ((float)v1.z > params.maxPenalties*v1.x || v1.x <= minModulesInTimingPattern || abs(v1.y / (float)v1.x - 0.5f) > params.maxColorsMismatch)
return std::numeric_limits<int>::max();
const Point3i v2 = centerPattern.getTimingPatternScore(bottomPattern.getTimingStart(FinderPatternInfo::CENTER),
centerPattern.getTimingStart(FinderPatternInfo::BOTTOM), img,
params.maxTimingPatternMismatch);
if ((float)v2.z > params.maxPenalties*v2.x || v2.x <= minModulesInTimingPattern || abs(v2.y / (float)v2.x - 0.5f) > params.maxColorsMismatch)
return std::numeric_limits<int>::max();
// TODO: add v1, v2 check, add "y" checks
float numModules = (sqrt(normL2Sqr<float>((centerPattern.getQRCorner().second - rightPattern.getQRCorner().second)))*0.5f +
sqrt(normL2Sqr<float>((centerPattern.getQRCorner().second - bottomPattern.getQRCorner().second))*0.5f)) / moduleSize;
const int sizeDelta = abs(cvRound(numModules) - (14 + v1.z < v2.z ? v1.x : v2.x));
const int colorDelta = abs(v1.x - v1.y - v1.y) + abs(v2.x - v2.y - v2.y);
const int score = v1.z + v2.z + sizeDelta + colorDelta;
return score;
}
QRCode& operator*=(const float scale) {
centerPattern *= scale;
rightPattern *= scale;
bottomPattern *= scale;
center *= scale;
moduleSize *= scale;
return *this;
}
FinderPatternInfo centerPattern;
FinderPatternInfo rightPattern;
FinderPatternInfo bottomPattern;
Point2f center;
float distance = std::numeric_limits<float>::max();
int timingPatternScore = std::numeric_limits<int>::max();
float moduleSize = 0.f;
};
} // namespace
static
vector<QRCode> analyzeFinderPatterns(const vector<vector<Point2f> > &corners, const Mat& img,
const QRCodeDetectorAruco::Params& qrDetectorParameters) {
vector<QRCode> qrCodes;
vector<FinderPatternInfo> patterns;
if (img.empty())
return qrCodes;
float maxModuleSize = 0.f;
for (size_t i = 0ull; i < corners.size(); i++) {
FinderPatternInfo pattern = FinderPatternInfo(corners[i]);
// TODO: improve thinning Aruco markers
bool isUniq = true;
for (const FinderPatternInfo& tmp : patterns) {
Point2f dist = pattern.center - tmp.center;
if (max(abs(dist.x), abs(dist.y)) < 3.f * tmp.moduleSize) {
isUniq = false;
break;
}
}
if (isUniq) {
patterns.push_back(pattern);
maxModuleSize = max(maxModuleSize, patterns.back().moduleSize);
}
}
const int threshold = cvRound(qrDetectorParameters.minModuleSizeInPyramid * 12.5f) +
(cvRound(qrDetectorParameters.minModuleSizeInPyramid * 12.5f) % 2 ? 0 : 1);
int maxLevelPyramid = 0;
while (maxModuleSize / 2.f > qrDetectorParameters.minModuleSizeInPyramid) {
maxLevelPyramid++;
maxModuleSize /= 2.f;
}
vector<Mat> pyramid;
buildPyramid(img, pyramid, maxLevelPyramid);
// TODO: ADAPTIVE_THRESH_GAUSSIAN_C vs ADAPTIVE_THRESH_MEAN_C
for (Mat& pyr: pyramid) {
adaptiveThreshold(pyr, pyr, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, threshold, -1);
}
for (size_t i = 0ull; i < patterns.size(); i++) {
QRCode qrCode;
int indexes[3] = {0};
for (size_t j = i + 1ull; j < patterns.size(); j++) {
for (size_t k = j + 1ull; k < patterns.size(); k++) {
Point3i index((int)i, (int)j, (int)k);
QRCode tmp = QRCode::checkCompatibilityPattern(patterns[i], patterns[j], patterns[k], index, qrDetectorParameters);
if (tmp.distance != std::numeric_limits<float>::max()) {
int levelPyramid = 0;
QRCode qrCopy = tmp;
while (tmp.moduleSize / 2.f > qrDetectorParameters.minModuleSizeInPyramid) {
tmp *= 0.5f;
levelPyramid++;
}
qrCopy.timingPatternScore = tmp.calculateScoreByTimingPattern(pyramid[levelPyramid], qrDetectorParameters);
if (qrCopy.timingPatternScore != std::numeric_limits<int>::max() &&
qrCopy.timingPatternScore * qrDetectorParameters.scaleTimingPatternScore < (float)qrCode.timingPatternScore
&& qrCopy.distance < qrCode.distance)
{
qrCode = qrCopy;
indexes[0] = (int)i;
indexes[1] = (int)j;
indexes[2] = (int)k;
}
}
}
}
if (qrCode.distance != std::numeric_limits<float>::max()) {
qrCodes.push_back(qrCode);
std::swap(patterns[indexes[2]], patterns.back());
patterns.pop_back();
std::swap(patterns[indexes[1]], patterns.back());
patterns.pop_back();
std::swap(patterns[indexes[0]], patterns.back());
patterns.pop_back();
i--;
}
}
return qrCodes;
}
struct PimplQRAruco : public ImplContour {
QRCodeDetectorAruco::Params qrParams;
aruco::ArucoDetector arucoDetector;
aruco::DetectorParameters arucoParams;
PimplQRAruco() {
Mat bits = Mat::ones(Size(5, 5), CV_8UC1);
Mat(bits, Rect(1, 1, 3, 3)).setTo(Scalar(0));
Mat byteList = aruco::Dictionary::getByteListFromBits(bits);
aruco::Dictionary dictionary = aruco::Dictionary(byteList, 5, 4);
arucoParams.minMarkerPerimeterRate = 0.02;
arucoDetector = aruco::ArucoDetector(dictionary, arucoParams);
}
bool detectMulti(InputArray in, OutputArray points) const override {
Mat gray;
if (!checkQRInputImage(in, gray)) {
points.release();
return false;
}
vector<Point2f> result;
vector<vector<Point2f> > corners;
vector<int> ids;
arucoDetector.detectMarkers(gray, corners, ids);
if (corners.size() >= 3ull) {
vector<QRCode> qrCodes = analyzeFinderPatterns(corners, gray.clone(), qrParams);
if (qrCodes.size() == 0ull)
return false;
for (auto& qr : qrCodes) {
for (Point2f& corner : qr.getQRCorners()) {
result.push_back(corner);
}
}
}
if (result.size() >= 4) {
updatePointsResult(points, result);
return true;
}
return false;
}
bool detect(InputArray img, OutputArray points) const override {
vector<Point2f> corners, result;
bool flag = detectMulti(img, corners);
CV_Assert((int)corners.size() % 4 == 0);
Point2f imageCenter(((float)img.cols())/2.f, ((float)img.rows())/2.f);
size_t minQrId = 0ull;
float minDist = std::numeric_limits<float>::max();
for (size_t i = 0ull; i < corners.size(); i += 4ull) {
Point2f qrCenter((corners[i] + corners[i+1ull] + corners[i+2ull] + corners[i+3ull]) / 4.f);
float dist = sqrt(normL2Sqr<float>(qrCenter - imageCenter));
if (dist < minDist) {
minQrId = i;
minDist = dist;
}
}
if (flag) {
result = {corners[minQrId], corners[minQrId+1ull], corners[minQrId+2ull], corners[minQrId+3ull]};
updatePointsResult(points, result);
}
return flag;
}
};
QRCodeDetectorAruco::QRCodeDetectorAruco() {
p = makePtr<PimplQRAruco>();
}
QRCodeDetectorAruco::QRCodeDetectorAruco(const QRCodeDetectorAruco::Params& params) {
p = makePtr<PimplQRAruco>();
std::dynamic_pointer_cast<PimplQRAruco>(p)->qrParams = params;
}
const QRCodeDetectorAruco::Params& QRCodeDetectorAruco::getDetectorParameters() const {
return std::dynamic_pointer_cast<PimplQRAruco>(p)->qrParams;
}
QRCodeDetectorAruco& QRCodeDetectorAruco::setDetectorParameters(const QRCodeDetectorAruco::Params& params) {
std::dynamic_pointer_cast<PimplQRAruco>(p)->qrParams = params;
return *this;
}
aruco::DetectorParameters QRCodeDetectorAruco::getArucoParameters() {
return std::dynamic_pointer_cast<PimplQRAruco>(p)->arucoParams;
}
void QRCodeDetectorAruco::setArucoParameters(const aruco::DetectorParameters& params) {
std::dynamic_pointer_cast<PimplQRAruco>(p)->arucoParams = params;
}
} // namespace