mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
4a297a2443
- removed tr1 usage (dropped in C++17) - moved includes of vector/map/iostream/limits into ts.hpp - require opencv_test + anonymous namespace (added compile check) - fixed norm() usage (must be from cvtest::norm for checks) and other conflict functions - added missing license headers
342 lines
11 KiB
C++
342 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MatchTemplate8U
|
|
|
|
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
|
|
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED))
|
|
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
|
|
}
|
|
|
|
PARAM_TEST_CASE(MatchTemplate8U, cv::cuda::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
cv::Size templ_size;
|
|
int cn;
|
|
int method;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
templ_size = GET_PARAM(2);
|
|
cn = GET_PARAM(3);
|
|
method = GET_PARAM(4);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MatchTemplate8U, Accuracy)
|
|
{
|
|
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
|
|
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
|
|
|
|
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
|
|
|
|
cv::cuda::GpuMat dst;
|
|
alg->match(loadMat(image), loadMat(templ), dst);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::matchTemplate(image, templ, dst_gold, method);
|
|
|
|
cv::Mat h_dst(dst);
|
|
ASSERT_EQ(dst_gold.size(), h_dst.size());
|
|
ASSERT_EQ(dst_gold.type(), h_dst.type());
|
|
for (int y = 0; y < h_dst.rows; ++y)
|
|
{
|
|
for (int x = 0; x < h_dst.cols; ++x)
|
|
{
|
|
float gold_val = dst_gold.at<float>(y, x);
|
|
float actual_val = dst_gold.at<float>(y, x);
|
|
ASSERT_FLOAT_EQ(gold_val, actual_val) << y << ", " << x;
|
|
}
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate8U, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
|
|
testing::Values(Channels(1), Channels(3), Channels(4)),
|
|
ALL_TEMPLATE_METHODS));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MatchTemplate32F
|
|
|
|
PARAM_TEST_CASE(MatchTemplate32F, cv::cuda::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
cv::Size templ_size;
|
|
int cn;
|
|
int method;
|
|
|
|
int n, m, h, w;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
templ_size = GET_PARAM(2);
|
|
cn = GET_PARAM(3);
|
|
method = GET_PARAM(4);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MatchTemplate32F, Regression)
|
|
{
|
|
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
|
|
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
|
|
|
|
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
|
|
|
|
cv::cuda::GpuMat dst;
|
|
alg->match(loadMat(image), loadMat(templ), dst);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::matchTemplate(image, templ, dst_gold, method);
|
|
|
|
cv::Mat h_dst(dst);
|
|
ASSERT_EQ(dst_gold.size(), h_dst.size());
|
|
ASSERT_EQ(dst_gold.type(), h_dst.type());
|
|
for (int y = 0; y < h_dst.rows; ++y)
|
|
{
|
|
for (int x = 0; x < h_dst.cols; ++x)
|
|
{
|
|
float gold_val = dst_gold.at<float>(y, x);
|
|
float actual_val = dst_gold.at<float>(y, x);
|
|
ASSERT_FLOAT_EQ(gold_val, actual_val) << y << ", " << x;
|
|
}
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate32F, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
|
|
testing::Values(Channels(1), Channels(3), Channels(4)),
|
|
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MatchTemplateBlackSource
|
|
|
|
PARAM_TEST_CASE(MatchTemplateBlackSource, cv::cuda::DeviceInfo, TemplateMethod)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
int method;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
method = GET_PARAM(1);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MatchTemplateBlackSource, Accuracy)
|
|
{
|
|
cv::Mat image = readImage("matchtemplate/black.png");
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
cv::Mat pattern = readImage("matchtemplate/cat.png");
|
|
ASSERT_FALSE(pattern.empty());
|
|
|
|
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
|
|
|
|
cv::cuda::GpuMat d_dst;
|
|
alg->match(loadMat(image), loadMat(pattern), d_dst);
|
|
|
|
cv::Mat dst(d_dst);
|
|
|
|
double maxValue;
|
|
cv::Point maxLoc;
|
|
cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc);
|
|
|
|
cv::Point maxLocGold = cv::Point(284, 12);
|
|
|
|
ASSERT_EQ(maxLocGold, maxLoc);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplateBlackSource, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(TemplateMethod(cv::TM_CCOEFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED))));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MatchTemplate_CCOEF_NORMED
|
|
|
|
PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::cuda::DeviceInfo, std::pair<std::string, std::string>)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
std::string imageName;
|
|
std::string patternName;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
imageName = GET_PARAM(1).first;
|
|
patternName = GET_PARAM(1).second;
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
|
|
{
|
|
cv::Mat image = readImage(imageName);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
cv::Mat pattern = readImage(patternName);
|
|
ASSERT_FALSE(pattern.empty());
|
|
|
|
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), cv::TM_CCOEFF_NORMED);
|
|
|
|
cv::cuda::GpuMat d_dst;
|
|
alg->match(loadMat(image), loadMat(pattern), d_dst);
|
|
|
|
cv::Mat dst(d_dst);
|
|
|
|
cv::Point minLoc, maxLoc;
|
|
double minVal, maxVal;
|
|
cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc);
|
|
|
|
cv::Mat dstGold;
|
|
cv::matchTemplate(image, pattern, dstGold, cv::TM_CCOEFF_NORMED);
|
|
|
|
double minValGold, maxValGold;
|
|
cv::Point minLocGold, maxLocGold;
|
|
cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold);
|
|
|
|
ASSERT_EQ(minLocGold, minLoc);
|
|
ASSERT_EQ(maxLocGold, maxLoc);
|
|
ASSERT_LE(maxVal, 1.0);
|
|
ASSERT_GE(minVal, -1.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate_CCOEF_NORMED, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png")))));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MatchTemplate_CanFindBigTemplate
|
|
|
|
struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::cuda::DeviceInfo>
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
|
|
{
|
|
cv::Mat scene = readImage("matchtemplate/scene.png");
|
|
ASSERT_FALSE(scene.empty());
|
|
|
|
cv::Mat templ = readImage("matchtemplate/template.png");
|
|
ASSERT_FALSE(templ.empty());
|
|
|
|
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(scene.type(), cv::TM_SQDIFF_NORMED);
|
|
|
|
cv::cuda::GpuMat d_result;
|
|
alg->match(loadMat(scene), loadMat(templ), d_result);
|
|
|
|
cv::Mat result(d_result);
|
|
|
|
double minVal;
|
|
cv::Point minLoc;
|
|
cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
|
|
|
|
ASSERT_GE(minVal, 0);
|
|
ASSERT_LT(minVal, 1e-3);
|
|
ASSERT_EQ(344, minLoc.x);
|
|
ASSERT_EQ(0, minLoc.y);
|
|
}
|
|
|
|
CUDA_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
|
|
{
|
|
cv::Mat scene = readImage("matchtemplate/scene.png");
|
|
ASSERT_FALSE(scene.empty());
|
|
|
|
cv::Mat templ = readImage("matchtemplate/template.png");
|
|
ASSERT_FALSE(templ.empty());
|
|
|
|
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(scene.type(), cv::TM_SQDIFF);
|
|
|
|
cv::cuda::GpuMat d_result;
|
|
alg->match(loadMat(scene), loadMat(templ), d_result);
|
|
|
|
cv::Mat result(d_result);
|
|
|
|
double minVal;
|
|
cv::Point minLoc;
|
|
cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
|
|
|
|
ASSERT_GE(minVal, 0);
|
|
ASSERT_EQ(344, minLoc.x);
|
|
ASSERT_EQ(0, minLoc.y);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES);
|
|
|
|
|
|
}} // namespace
|
|
#endif // HAVE_CUDA
|