opencv/modules/ocl/perf/utility.cpp

266 lines
6.5 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define VARNAME(A) #A
using namespace std;
using namespace cv;
using namespace cv::gpu;
using namespace cvtest;
//std::string generateVarList(int first,...)
//{
// vector<std::string> varname;
//
// va_list argp;
// string s;
// stringstream ss;
// va_start(argp,first);
// int i=first;
// while(i!=-1)
// {
// ss<<i<<",";
// i=va_arg(argp,int);
// };
// s=ss.str();
// va_end(argp);
// return s;
//};
//std::string generateVarList(int& p1,int& p2)
//{
// stringstream ss;
// ss<<VARNAME(p1)<<":"<<src1x<<","<<VARNAME(p2)<<":"<<src1y;
// return ss.str();
//};
int randomInt(int minVal, int maxVal)
{
RNG& rng = TS::ptr()->get_rng();
return rng.uniform(minVal, maxVal);
}
double randomDouble(double minVal, double maxVal)
{
RNG& rng = TS::ptr()->get_rng();
return rng.uniform(minVal, maxVal);
}
Size randomSize(int minVal, int maxVal)
{
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
}
Scalar randomScalar(double minVal, double maxVal)
{
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
}
Mat randomMat(Size size, int type, double minVal, double maxVal)
{
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
}
/*
void showDiff(InputArray gold_, InputArray actual_, double eps)
{
Mat gold;
if (gold_.kind() == _InputArray::MAT)
gold = gold_.getMat();
else
gold_.getGpuMat().download(gold);
Mat actual;
if (actual_.kind() == _InputArray::MAT)
actual = actual_.getMat();
else
actual_.getGpuMat().download(actual);
Mat diff;
absdiff(gold, actual, diff);
threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
namedWindow("gold", WINDOW_NORMAL);
namedWindow("actual", WINDOW_NORMAL);
namedWindow("diff", WINDOW_NORMAL);
imshow("gold", gold);
imshow("actual", actual);
imshow("diff", diff);
waitKey();
}
*/
/*
bool supportFeature(const DeviceInfo& info, FeatureSet feature)
{
return TargetArchs::builtWith(feature) && info.supports(feature);
}
const vector<DeviceInfo>& devices()
{
static vector<DeviceInfo> devs;
static bool first = true;
if (first)
{
int deviceCount = getCudaEnabledDeviceCount();
devs.reserve(deviceCount);
for (int i = 0; i < deviceCount; ++i)
{
DeviceInfo info(i);
if (info.isCompatible())
devs.push_back(info);
}
first = false;
}
return devs;
}
vector<DeviceInfo> devices(FeatureSet feature)
{
const vector<DeviceInfo>& d = devices();
vector<DeviceInfo> devs_filtered;
if (TargetArchs::builtWith(feature))
{
devs_filtered.reserve(d.size());
for (size_t i = 0, size = d.size(); i < size; ++i)
{
const DeviceInfo& info = d[i];
if (info.supports(feature))
devs_filtered.push_back(info);
}
}
return devs_filtered;
}
*/
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
vector<MatType> v;
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
for (int depth = depth_start; depth <= depth_end; ++depth)
{
for (int cn = cn_start; cn <= cn_end; ++cn)
{
v.push_back(CV_MAKETYPE(depth, cn));
}
}
return v;
}
const vector<MatType>& all_types()
{
static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);
return v;
}
Mat readImage(const string& fileName, int flags)
{
return imread(string(cvtest::TS::ptr()->get_data_path()) + fileName, flags);
}
Mat readImageType(const string& fname, int type)
{
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
if (CV_MAT_CN(type) == 4)
{
Mat temp;
cvtColor(src, temp, cv::COLOR_BGR2BGRA);
swap(src, temp);
}
src.convertTo(src, CV_MAT_DEPTH(type));
return src;
}
double checkNorm(const Mat& m)
{
return norm(m, NORM_INF);
}
double checkNorm(const Mat& m1, const Mat& m2)
{
return norm(m1, m2, NORM_INF);
}
double checkSimilarity(const Mat& m1, const Mat& m2)
{
Mat diff;
matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED);
return std::abs(diff.at<float>(0, 0) - 1.f);
}
/*
void cv::ocl::PrintTo(const DeviceInfo& info, ostream* os)
{
(*os) << info.name();
}
*/
void PrintTo(const Inverse& inverse, std::ostream* os)
{
if (inverse)
(*os) << "inverse";
else
(*os) << "direct";
}