opencv/apps/traincascade/haarfeatures.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

307 lines
11 KiB
C++

#include "opencv2/core/core.hpp"
#include "opencv2/core/internal.hpp"
#include "haarfeatures.h"
#include "cascadeclassifier.h"
using namespace std;
CvHaarFeatureParams::CvHaarFeatureParams() : mode(BASIC)
{
name = HFP_NAME;
}
CvHaarFeatureParams::CvHaarFeatureParams( int _mode ) : mode( _mode )
{
name = HFP_NAME;
}
void CvHaarFeatureParams::init( const CvFeatureParams& fp )
{
CvFeatureParams::init( fp );
mode = ((const CvHaarFeatureParams&)fp).mode;
}
void CvHaarFeatureParams::write( FileStorage &fs ) const
{
CvFeatureParams::write( fs );
string modeStr = mode == BASIC ? CC_MODE_BASIC :
mode == CORE ? CC_MODE_CORE :
mode == ALL ? CC_MODE_ALL : string();
CV_Assert( !modeStr.empty() );
fs << CC_MODE << modeStr;
}
bool CvHaarFeatureParams::read( const FileNode &node )
{
if( !CvFeatureParams::read( node ) )
return false;
FileNode rnode = node[CC_MODE];
if( !rnode.isString() )
return false;
string modeStr;
rnode >> modeStr;
mode = !modeStr.compare( CC_MODE_BASIC ) ? BASIC :
!modeStr.compare( CC_MODE_CORE ) ? CORE :
!modeStr.compare( CC_MODE_ALL ) ? ALL : -1;
return (mode >= 0);
}
void CvHaarFeatureParams::printDefaults() const
{
CvFeatureParams::printDefaults();
cout << " [-mode <" CC_MODE_BASIC << "(default) | "
<< CC_MODE_CORE <<" | " << CC_MODE_ALL << endl;
}
void CvHaarFeatureParams::printAttrs() const
{
CvFeatureParams::printAttrs();
string mode_str = mode == BASIC ? CC_MODE_BASIC :
mode == CORE ? CC_MODE_CORE :
mode == ALL ? CC_MODE_ALL : 0;
cout << "mode: " << mode_str << endl;
}
bool CvHaarFeatureParams::scanAttr( const string prmName, const string val)
{
if ( !CvFeatureParams::scanAttr( prmName, val ) )
{
if( !prmName.compare("-mode") )
{
mode = !val.compare( CC_MODE_CORE ) ? CORE :
!val.compare( CC_MODE_ALL ) ? ALL :
!val.compare( CC_MODE_BASIC ) ? BASIC : -1;
if (mode == -1)
return false;
}
return false;
}
return true;
}
//--------------------- HaarFeatureEvaluator ----------------
void CvHaarEvaluator::init(const CvFeatureParams *_featureParams,
int _maxSampleCount, Size _winSize )
{
CV_Assert(_maxSampleCount > 0);
int cols = (_winSize.width + 1) * (_winSize.height + 1);
sum.create((int)_maxSampleCount, cols, CV_32SC1);
tilted.create((int)_maxSampleCount, cols, CV_32SC1);
normfactor.create(1, (int)_maxSampleCount, CV_32FC1);
CvFeatureEvaluator::init( _featureParams, _maxSampleCount, _winSize );
}
void CvHaarEvaluator::setImage(const Mat& img, uchar clsLabel, int idx)
{
CV_DbgAssert( !sum.empty() && !tilted.empty() && !normfactor.empty() );
CvFeatureEvaluator::setImage( img, clsLabel, idx);
Mat innSum(winSize.height + 1, winSize.width + 1, sum.type(), sum.ptr<int>((int)idx));
Mat innTilted(winSize.height + 1, winSize.width + 1, tilted.type(), tilted.ptr<int>((int)idx));
Mat innSqSum;
integral(img, innSum, innSqSum, innTilted);
normfactor.ptr<float>(0)[idx] = calcNormFactor( innSum, innSqSum );
}
void CvHaarEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
{
_writeFeatures( features, fs, featureMap );
}
void CvHaarEvaluator::writeFeature(FileStorage &fs, int fi) const
{
CV_DbgAssert( fi < (int)features.size() );
features[fi].write(fs);
}
void CvHaarEvaluator::generateFeatures()
{
int mode = ((const CvHaarFeatureParams*)((CvFeatureParams*)featureParams))->mode;
int offset = winSize.width + 1;
for( int x = 0; x < winSize.width; x++ )
{
for( int y = 0; y < winSize.height; y++ )
{
for( int dx = 1; dx <= winSize.width; dx++ )
{
for( int dy = 1; dy <= winSize.height; dy++ )
{
// haar_x2
if ( (x+dx*2 <= winSize.width) && (y+dy <= winSize.height) )
{
features.push_back( Feature( offset, false,
x, y, dx*2, dy, -1,
x+dx, y, dx , dy, +2 ) );
}
// haar_y2
if ( (x+dx <= winSize.width) && (y+dy*2 <= winSize.height) )
{
features.push_back( Feature( offset, false,
x, y, dx, dy*2, -1,
x, y+dy, dx, dy, +2 ) );
}
// haar_x3
if ( (x+dx*3 <= winSize.width) && (y+dy <= winSize.height) )
{
features.push_back( Feature( offset, false,
x, y, dx*3, dy, -1,
x+dx, y, dx , dy, +3 ) );
}
// haar_y3
if ( (x+dx <= winSize.width) && (y+dy*3 <= winSize.height) )
{
features.push_back( Feature( offset, false,
x, y, dx, dy*3, -1,
x, y+dy, dx, dy, +3 ) );
}
if( mode != CvHaarFeatureParams::BASIC )
{
// haar_x4
if ( (x+dx*4 <= winSize.width) && (y+dy <= winSize.height) )
{
features.push_back( Feature( offset, false,
x, y, dx*4, dy, -1,
x+dx, y, dx*2, dy, +2 ) );
}
// haar_y4
if ( (x+dx <= winSize.width ) && (y+dy*4 <= winSize.height) )
{
features.push_back( Feature( offset, false,
x, y, dx, dy*4, -1,
x, y+dy, dx, dy*2, +2 ) );
}
}
// x2_y2
if ( (x+dx*2 <= winSize.width) && (y+dy*2 <= winSize.height) )
{
features.push_back( Feature( offset, false,
x, y, dx*2, dy*2, -1,
x, y, dx, dy, +2,
x+dx, y+dy, dx, dy, +2 ) );
}
if (mode != CvHaarFeatureParams::BASIC)
{
if ( (x+dx*3 <= winSize.width) && (y+dy*3 <= winSize.height) )
{
features.push_back( Feature( offset, false,
x , y , dx*3, dy*3, -1,
x+dx, y+dy, dx , dy , +9) );
}
}
if (mode == CvHaarFeatureParams::ALL)
{
// tilted haar_x2
if ( (x+2*dx <= winSize.width) && (y+2*dx+dy <= winSize.height) && (x-dy>= 0) )
{
features.push_back( Feature( offset, true,
x, y, dx*2, dy, -1,
x, y, dx, dy, +2 ) );
}
// tilted haar_y2
if ( (x+dx <= winSize.width) && (y+dx+2*dy <= winSize.height) && (x-2*dy>= 0) )
{
features.push_back( Feature( offset, true,
x, y, dx, 2*dy, -1,
x, y, dx, dy, +2 ) );
}
// tilted haar_x3
if ( (x+3*dx <= winSize.width) && (y+3*dx+dy <= winSize.height) && (x-dy>= 0) )
{
features.push_back( Feature( offset, true,
x, y, dx*3, dy, -1,
x+dx, y+dx, dx, dy, +3 ) );
}
// tilted haar_y3
if ( (x+dx <= winSize.width) && (y+dx+3*dy <= winSize.height) && (x-3*dy>= 0) )
{
features.push_back( Feature( offset, true,
x, y, dx, 3*dy, -1,
x-dy, y+dy, dx, dy, +3 ) );
}
// tilted haar_x4
if ( (x+4*dx <= winSize.width) && (y+4*dx+dy <= winSize.height) && (x-dy>= 0) )
{
features.push_back( Feature( offset, true,
x, y, dx*4, dy, -1,
x+dx, y+dx, dx*2, dy, +2 ) );
}
// tilted haar_y4
if ( (x+dx <= winSize.width) && (y+dx+4*dy <= winSize.height) && (x-4*dy>= 0) )
{
features.push_back( Feature( offset, true,
x, y, dx, 4*dy, -1,
x-dy, y+dy, dx, 2*dy, +2 ) );
}
}
}
}
}
}
numFeatures = (int)features.size();
}
CvHaarEvaluator::Feature::Feature()
{
tilted = false;
rect[0].r = rect[1].r = rect[2].r = Rect(0,0,0,0);
rect[0].weight = rect[1].weight = rect[2].weight = 0;
}
CvHaarEvaluator::Feature::Feature( int offset, bool _tilted,
int x0, int y0, int w0, int h0, float wt0,
int x1, int y1, int w1, int h1, float wt1,
int x2, int y2, int w2, int h2, float wt2 )
{
tilted = _tilted;
rect[0].r.x = x0;
rect[0].r.y = y0;
rect[0].r.width = w0;
rect[0].r.height = h0;
rect[0].weight = wt0;
rect[1].r.x = x1;
rect[1].r.y = y1;
rect[1].r.width = w1;
rect[1].r.height = h1;
rect[1].weight = wt1;
rect[2].r.x = x2;
rect[2].r.y = y2;
rect[2].r.width = w2;
rect[2].r.height = h2;
rect[2].weight = wt2;
if( !tilted )
{
for( int j = 0; j < CV_HAAR_FEATURE_MAX; j++ )
{
if( rect[j].weight == 0.0F )
break;
CV_SUM_OFFSETS( fastRect[j].p0, fastRect[j].p1, fastRect[j].p2, fastRect[j].p3, rect[j].r, offset )
}
}
else
{
for( int j = 0; j < CV_HAAR_FEATURE_MAX; j++ )
{
if( rect[j].weight == 0.0F )
break;
CV_TILTED_OFFSETS( fastRect[j].p0, fastRect[j].p1, fastRect[j].p2, fastRect[j].p3, rect[j].r, offset )
}
}
}
void CvHaarEvaluator::Feature::write( FileStorage &fs ) const
{
fs << CC_RECTS << "[";
for( int ri = 0; ri < CV_HAAR_FEATURE_MAX && rect[ri].r.width != 0; ++ri )
{
fs << "[:" << rect[ri].r.x << rect[ri].r.y <<
rect[ri].r.width << rect[ri].r.height << rect[ri].weight << "]";
}
fs << "]" << CC_TILTED << tilted;
}