opencv/modules/flann/include/opencv2/flann/all_indices.h
pemmanuelviel c90e824342
Merge pull request #17639 from pemmanuelviel:pev--binary-kmeans
Pev binary kmeans

* Ongoing work transposing kmeans clustering method for bitfields: the computeClustering method

Ongoing work transposing kmeans clustering method for bitfields: interface computeBitfieldClustering

Fix genericity of computeNodeStatistics

Ongoing work transposing kmeans clustering method for bitfields: adapt computeNodeStatistics()

Ongoing work transposing kmeans clustering method for bitfields: adapt findNN() method

Ongoing work transposing kmeans clustering method for bitfields: allow kmeans with Hamming distance

Ongoing work transposing kmeans clustering method for bitfields: adapt distances code

Ongoing work transposing kmeans clustering method for bitfields: adapt load/save code

Ongoing work transposing kmeans clustering method for bitfields: adapt kmeans hierarchicalClustring()

PivotType -> CentersType Renaming

Fix type casting for ARM SIMD implementation of Hamming

Fix warnings with Win32 compilation

Fix warnings with Win64 compilation

Fix wrong parenthesis position on rounding

* Ensure proper rounding when CentersType is integral
2020-07-13 12:59:10 +00:00

163 lines
6.0 KiB
C++

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_ALL_INDICES_H_
#define OPENCV_FLANN_ALL_INDICES_H_
//! @cond IGNORED
#include "general.h"
#include "nn_index.h"
#include "kdtree_index.h"
#include "kdtree_single_index.h"
#include "kmeans_index.h"
#include "composite_index.h"
#include "linear_index.h"
#include "hierarchical_clustering_index.h"
#include "lsh_index.h"
#include "autotuned_index.h"
namespace cvflann
{
template<typename KDTreeCapability, typename VectorSpace, typename Distance>
struct index_creator
{
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE_SINGLE:
nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE:
nnIndex = new KDTreeIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KMEANS:
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_COMPOSITE:
nnIndex = new CompositeIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_AUTOTUNED:
nnIndex = new AutotunedIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = new LshIndex<Distance>(dataset, params, distance);
break;
default:
throw FLANNException("Unknown index type");
}
return nnIndex;
}
};
template<typename VectorSpace, typename Distance>
struct index_creator<False,VectorSpace,Distance>
{
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KMEANS:
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = new LshIndex<Distance>(dataset, params, distance);
break;
default:
throw FLANNException("Unknown index type");
}
return nnIndex;
}
};
template<typename Distance>
struct index_creator<False,False,Distance>
{
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KMEANS:
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = new LshIndex<Distance>(dataset, params, distance);
break;
default:
throw FLANNException("Unknown index type");
}
return nnIndex;
}
};
template<typename Distance>
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
return index_creator<typename Distance::is_kdtree_distance,
typename Distance::is_vector_space_distance,
Distance>::create(dataset, params,distance);
}
}
//! @endcond
#endif /* OPENCV_FLANN_ALL_INDICES_H_ */