mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
244 lines
6.9 KiB
C
244 lines
6.9 KiB
C
/* spotrf.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static real c_b13 = -1.f;
|
|
static real c_b14 = 1.f;
|
|
|
|
/* Subroutine */ int spotrf_(char *uplo, integer *n, real *a, integer *lda,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
|
|
|
/* Local variables */
|
|
integer j, jb, nb;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
|
|
integer *, real *, real *, integer *, real *, integer *, real *,
|
|
real *, integer *);
|
|
logical upper;
|
|
extern /* Subroutine */ int strsm_(char *, char *, char *, char *,
|
|
integer *, integer *, real *, real *, integer *, real *, integer *
|
|
), ssyrk_(char *, char *, integer
|
|
*, integer *, real *, real *, integer *, real *, real *, integer *
|
|
), spotf2_(char *, integer *, real *, integer *,
|
|
integer *), xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SPOTRF computes the Cholesky factorization of a real symmetric */
|
|
/* positive definite matrix A. */
|
|
|
|
/* The factorization has the form */
|
|
/* A = U**T * U, if UPLO = 'U', or */
|
|
/* A = L * L**T, if UPLO = 'L', */
|
|
/* where U is an upper triangular matrix and L is lower triangular. */
|
|
|
|
/* This is the block version of the algorithm, calling Level 3 BLAS. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
/* = 'U': Upper triangle of A is stored; */
|
|
/* = 'L': Lower triangle of A is stored. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
|
/* N-by-N upper triangular part of A contains the upper */
|
|
/* triangular part of the matrix A, and the strictly lower */
|
|
/* triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* leading N-by-N lower triangular part of A contains the lower */
|
|
/* triangular part of the matrix A, and the strictly upper */
|
|
/* triangular part of A is not referenced. */
|
|
|
|
/* On exit, if INFO = 0, the factor U or L from the Cholesky */
|
|
/* factorization A = U**T*U or A = L*L**T. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > 0: if INFO = i, the leading minor of order i is not */
|
|
/* positive definite, and the factorization could not be */
|
|
/* completed. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SPOTRF", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the block size for this environment. */
|
|
|
|
nb = ilaenv_(&c__1, "SPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
|
|
if (nb <= 1 || nb >= *n) {
|
|
|
|
/* Use unblocked code. */
|
|
|
|
spotf2_(uplo, n, &a[a_offset], lda, info);
|
|
} else {
|
|
|
|
/* Use blocked code. */
|
|
|
|
if (upper) {
|
|
|
|
/* Compute the Cholesky factorization A = U'*U. */
|
|
|
|
i__1 = *n;
|
|
i__2 = nb;
|
|
for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
|
|
|
|
/* Update and factorize the current diagonal block and test */
|
|
/* for non-positive-definiteness. */
|
|
|
|
/* Computing MIN */
|
|
i__3 = nb, i__4 = *n - j + 1;
|
|
jb = min(i__3,i__4);
|
|
i__3 = j - 1;
|
|
ssyrk_("Upper", "Transpose", &jb, &i__3, &c_b13, &a[j *
|
|
a_dim1 + 1], lda, &c_b14, &a[j + j * a_dim1], lda);
|
|
spotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
|
|
if (*info != 0) {
|
|
goto L30;
|
|
}
|
|
if (j + jb <= *n) {
|
|
|
|
/* Compute the current block row. */
|
|
|
|
i__3 = *n - j - jb + 1;
|
|
i__4 = j - 1;
|
|
sgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
|
|
c_b13, &a[j * a_dim1 + 1], lda, &a[(j + jb) *
|
|
a_dim1 + 1], lda, &c_b14, &a[j + (j + jb) *
|
|
a_dim1], lda);
|
|
i__3 = *n - j - jb + 1;
|
|
strsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
|
|
i__3, &c_b14, &a[j + j * a_dim1], lda, &a[j + (j
|
|
+ jb) * a_dim1], lda);
|
|
}
|
|
/* L10: */
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Compute the Cholesky factorization A = L*L'. */
|
|
|
|
i__2 = *n;
|
|
i__1 = nb;
|
|
for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
|
|
|
|
/* Update and factorize the current diagonal block and test */
|
|
/* for non-positive-definiteness. */
|
|
|
|
/* Computing MIN */
|
|
i__3 = nb, i__4 = *n - j + 1;
|
|
jb = min(i__3,i__4);
|
|
i__3 = j - 1;
|
|
ssyrk_("Lower", "No transpose", &jb, &i__3, &c_b13, &a[j +
|
|
a_dim1], lda, &c_b14, &a[j + j * a_dim1], lda);
|
|
spotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
|
|
if (*info != 0) {
|
|
goto L30;
|
|
}
|
|
if (j + jb <= *n) {
|
|
|
|
/* Compute the current block column. */
|
|
|
|
i__3 = *n - j - jb + 1;
|
|
i__4 = j - 1;
|
|
sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
|
|
c_b13, &a[j + jb + a_dim1], lda, &a[j + a_dim1],
|
|
lda, &c_b14, &a[j + jb + j * a_dim1], lda);
|
|
i__3 = *n - j - jb + 1;
|
|
strsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
|
|
jb, &c_b14, &a[j + j * a_dim1], lda, &a[j + jb +
|
|
j * a_dim1], lda);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
}
|
|
goto L40;
|
|
|
|
L30:
|
|
*info = *info + j - 1;
|
|
|
|
L40:
|
|
return 0;
|
|
|
|
/* End of SPOTRF */
|
|
|
|
} /* spotrf_ */
|