mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
106 lines
2.7 KiB
C++
106 lines
2.7 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef LINEARSEARCH_H
|
|
#define LINEARSEARCH_H
|
|
|
|
#include "constants.h"
|
|
#include "nn_index.h"
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
class LinearIndex : public NNIndex {
|
|
|
|
const Matrix<float> dataset;
|
|
|
|
public:
|
|
|
|
LinearIndex(const Matrix<float>& inputData, const LinearIndexParams& params = LinearIndexParams() ) : dataset(inputData)
|
|
{
|
|
}
|
|
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return LINEAR;
|
|
}
|
|
|
|
|
|
int size() const
|
|
{
|
|
return dataset.rows;
|
|
}
|
|
|
|
int veclen() const
|
|
{
|
|
return dataset.cols;
|
|
}
|
|
|
|
|
|
int usedMemory() const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void buildIndex()
|
|
{
|
|
/* nothing to do here for linear search */
|
|
}
|
|
|
|
void saveIndex(FILE* /*stream*/)
|
|
{
|
|
/* nothing to do here for linear search */
|
|
}
|
|
|
|
|
|
void loadIndex(FILE* /*stream*/)
|
|
{
|
|
/* nothing to do here for linear search */
|
|
}
|
|
|
|
void findNeighbors(ResultSet& resultSet, const float* /*vec*/, const SearchParams& /*searchParams*/)
|
|
{
|
|
for (int i=0;i<dataset.rows;++i) {
|
|
resultSet.addPoint(dataset[i],i);
|
|
}
|
|
}
|
|
|
|
// Params estimateSearchParams(float precision, Matrix<float>* testset = NULL)
|
|
// {
|
|
// Params params;
|
|
// return params;
|
|
// }
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif // LINEARSEARCH_H
|