opencv/modules/dnn/perf/perf_caffe.cpp
Dmitry Kurtaev 8ad5eb521a
Merge pull request #24120 from dkurt:actualize_dnn_links
OCL_FP16 MatMul with large batch

* Workaround FP16 MatMul with large batch

* Fix OCL reinitialization

* Higher thresholds for INT8 quantization

* Try fix gemm_buffer_NT for half (columns)

* Fix GEMM by rows

* Add batch dimension to InnerProduct layer test

* Fix Test_ONNX_conformance.Layer_Test/test_basic_conv_with_padding

* Batch 16

* Replace all vload4

* Version suffix for MobileNetSSD_deploy Caffe model
2023-08-16 15:46:11 +03:00

112 lines
3.4 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
// Recommends run this performance test via
// ./bin/opencv_perf_dnn 2> /dev/null | grep "PERFSTAT" -A 3
// because whole output includes Caffe's logs.
//
// Note: Be sure that interesting version of Caffe was linked.
// Note: There is an impact on Halide performance. Comment this tests if you
// want to run the last one.
//
// How to build Intel-Caffe with MKLDNN backend
// ============================================
// mkdir build && cd build
// cmake -DCMAKE_BUILD_TYPE=Release \
// -DUSE_MKLDNN_AS_DEFAULT_ENGINE=ON \
// -DUSE_MKL2017_AS_DEFAULT_ENGINE=OFF \
// -DCPU_ONLY=ON \
// -DCMAKE_INSTALL_PREFIX=/usr/local .. && make -j8
// sudo make install
//
// In case of problems with cublas_v2.h at include/caffe/util/device_alternate.hpp: add line
// #define CPU_ONLY
// before the first line
// #ifdef CPU_ONLY // CPU-only Caffe.
#if defined(HAVE_CAFFE) || defined(HAVE_CLCAFFE)
#include "perf_precomp.hpp"
#include <iostream>
#include <caffe/caffe.hpp>
namespace opencv_test {
static caffe::Net<float>* initNet(std::string proto, std::string weights)
{
proto = findDataFile(proto);
weights = findDataFile(weights, false);
#ifdef HAVE_CLCAFFE
caffe::Caffe::set_mode(caffe::Caffe::GPU);
caffe::Caffe::SetDevice(0);
caffe::Net<float>* net =
new caffe::Net<float>(proto, caffe::TEST, caffe::Caffe::GetDefaultDevice());
#else
caffe::Caffe::set_mode(caffe::Caffe::CPU);
caffe::Net<float>* net = new caffe::Net<float>(proto, caffe::TEST);
#endif
net->CopyTrainedLayersFrom(weights);
caffe::Blob<float>* input = net->input_blobs()[0];
CV_Assert(input->num() == 1);
CV_Assert(input->channels() == 3);
Mat inputMat(input->height(), input->width(), CV_32FC3, (char*)input->cpu_data());
randu(inputMat, 0.0f, 1.0f);
net->Forward();
return net;
}
PERF_TEST(AlexNet_caffe, CaffePerfTest)
{
caffe::Net<float>* net = initNet("dnn/bvlc_alexnet.prototxt",
"dnn/bvlc_alexnet.caffemodel");
TEST_CYCLE() net->Forward();
SANITY_CHECK_NOTHING();
}
PERF_TEST(GoogLeNet_caffe, CaffePerfTest)
{
caffe::Net<float>* net = initNet("dnn/bvlc_googlenet.prototxt",
"dnn/bvlc_googlenet.caffemodel");
TEST_CYCLE() net->Forward();
SANITY_CHECK_NOTHING();
}
PERF_TEST(ResNet50_caffe, CaffePerfTest)
{
caffe::Net<float>* net = initNet("dnn/ResNet-50-deploy.prototxt",
"dnn/ResNet-50-model.caffemodel");
TEST_CYCLE() net->Forward();
SANITY_CHECK_NOTHING();
}
PERF_TEST(SqueezeNet_v1_1_caffe, CaffePerfTest)
{
caffe::Net<float>* net = initNet("dnn/squeezenet_v1.1.prototxt",
"dnn/squeezenet_v1.1.caffemodel");
TEST_CYCLE() net->Forward();
SANITY_CHECK_NOTHING();
}
PERF_TEST(MobileNet_SSD, CaffePerfTest)
{
caffe::Net<float>* net = initNet("dnn/MobileNetSSD_deploy_19e3ec3.prototxt",
"dnn/MobileNetSSD_deploy_19e3ec3.caffemodel");
TEST_CYCLE() net->Forward();
SANITY_CHECK_NOTHING();
}
} // namespace
#endif // HAVE_CAFFE