mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 10:18:12 +08:00
183 lines
6.3 KiB
Python
183 lines
6.3 KiB
Python
import cv2.cv as cv
|
|
import time
|
|
from pydmtx import DataMatrix
|
|
import numpy
|
|
import sys
|
|
import math
|
|
|
|
'''
|
|
Find 2 D barcode based on up to 3 channel datamatrix
|
|
'''
|
|
|
|
def absnorm8(im, im8):
|
|
""" im may be any single-channel image type. Return an 8-bit version, absolute value, normalized so that max is 255 """
|
|
(minVal, maxVal, _, _) = cv.MinMaxLoc(im)
|
|
cv.ConvertScaleAbs(im, im8, 255 / max(abs(minVal), abs(maxVal)), 0)
|
|
return im8
|
|
|
|
font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0, thickness = 2, lineType = cv.CV_AA)
|
|
if 0:
|
|
started = time.time()
|
|
print dm_write.decode(bg.width, bg.height, buffer(bg.tostring()), max_count = 1, min_edge = 12, max_edge = 13, shape = DataMatrix.DmtxSymbol10x10) # , timeout = 10)
|
|
print "took", time.time() - started
|
|
|
|
class DmtxFinder:
|
|
def __init__(self):
|
|
self.cache = {}
|
|
self.dm = DataMatrix()
|
|
|
|
def Cached(self, name, rows, cols, type):
|
|
key = (name, rows, cols)
|
|
if not key in self.cache:
|
|
self.cache[key] = cv.CreateMat(rows, cols, type)
|
|
return self.cache[key]
|
|
|
|
def find0(self, img):
|
|
started = time.time()
|
|
self.dm.decode(img.width,
|
|
img.height,
|
|
buffer(img.tostring()),
|
|
max_count = 4,
|
|
#min_edge = 6,
|
|
#max_edge = 19 # Units of 2 pixels
|
|
)
|
|
print "brute", time.time() - started
|
|
found = {}
|
|
for i in range(self.dm.count()):
|
|
stats = dm_read.stats(i + 1)
|
|
print stats
|
|
found[stats[0]] = stats[1]
|
|
return found
|
|
|
|
def find(self, img):
|
|
started = time.time()
|
|
gray = self.Cached('gray', img.height, img.width, cv.CV_8UC1)
|
|
cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
|
|
|
|
sobel = self.Cached('sobel', img.height, img.width, cv.CV_16SC1)
|
|
sobely = self.Cached('sobely', img.height, img.width, cv.CV_16SC1)
|
|
|
|
cv.Sobel(gray, sobel, 1, 0)
|
|
cv.Sobel(gray, sobely, 0, 1)
|
|
cv.Add(sobel, sobely, sobel)
|
|
|
|
sobel8 = self.Cached('sobel8', sobel.height, sobel.width, cv.CV_8UC1)
|
|
absnorm8(sobel, sobel8)
|
|
cv.Threshold(sobel8, sobel8, 128.0, 255.0, cv.CV_THRESH_BINARY)
|
|
|
|
sobel_integral = self.Cached('sobel_integral', img.height + 1, img.width + 1, cv.CV_32SC1)
|
|
cv.Integral(sobel8, sobel_integral)
|
|
|
|
d = 16
|
|
_x1y1 = cv.GetSubRect(sobel_integral, (0, 0, sobel_integral.cols - d, sobel_integral.rows - d))
|
|
_x1y2 = cv.GetSubRect(sobel_integral, (0, d, sobel_integral.cols - d, sobel_integral.rows - d))
|
|
_x2y1 = cv.GetSubRect(sobel_integral, (d, 0, sobel_integral.cols - d, sobel_integral.rows - d))
|
|
_x2y2 = cv.GetSubRect(sobel_integral, (d, d, sobel_integral.cols - d, sobel_integral.rows - d))
|
|
|
|
summation = cv.CloneMat(_x2y2)
|
|
cv.Sub(summation, _x1y2, summation)
|
|
cv.Sub(summation, _x2y1, summation)
|
|
cv.Add(summation, _x1y1, summation)
|
|
sum8 = self.Cached('sum8', summation.height, summation.width, cv.CV_8UC1)
|
|
absnorm8(summation, sum8)
|
|
cv.Threshold(sum8, sum8, 32.0, 255.0, cv.CV_THRESH_BINARY)
|
|
|
|
cv.ShowImage("sum8", sum8)
|
|
seq = cv.FindContours(sum8, cv.CreateMemStorage(), cv.CV_RETR_EXTERNAL)
|
|
subimg = cv.GetSubRect(img, (d / 2, d / 2, sum8.cols, sum8.rows))
|
|
t_cull = time.time() - started
|
|
|
|
seqs = []
|
|
while seq:
|
|
seqs.append(seq)
|
|
seq = seq.h_next()
|
|
|
|
started = time.time()
|
|
found = {}
|
|
print 'seqs', len(seqs)
|
|
for seq in seqs:
|
|
area = cv.ContourArea(seq)
|
|
if area > 1000:
|
|
rect = cv.BoundingRect(seq)
|
|
edge = int((14 / 14.) * math.sqrt(area) / 2 + 0.5)
|
|
candidate = cv.GetSubRect(subimg, rect)
|
|
sym = self.dm.decode(candidate.width,
|
|
candidate.height,
|
|
buffer(candidate.tostring()),
|
|
max_count = 1,
|
|
#min_edge = 6,
|
|
#max_edge = int(edge) # Units of 2 pixels
|
|
)
|
|
if sym:
|
|
onscreen = [(d / 2 + rect[0] + x, d / 2 + rect[1] + y) for (x, y) in self.dm.stats(1)[1]]
|
|
found[sym] = onscreen
|
|
else:
|
|
print "FAILED"
|
|
t_brute = time.time() - started
|
|
print "cull took", t_cull, "brute", t_brute
|
|
return found
|
|
|
|
bg = cv.CreateMat(1024, 1024, cv.CV_8UC3)
|
|
cv.Set(bg, cv.RGB(0, 0, 0))
|
|
df = DmtxFinder()
|
|
|
|
cv.NamedWindow("camera", 1)
|
|
|
|
def mkdmtx(msg):
|
|
dm_write = DataMatrix()
|
|
dm_write.encode(msg)
|
|
pi = dm_write.image # .resize((14, 14))
|
|
cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 3)
|
|
cv.SetData(cv_im, pi.tostring())
|
|
return cv_im
|
|
|
|
# test = [('WIL', (100,100))]: # , ('LOW', (250,100)), ('GAR', (300, 300)), ('AGE', (500, 300))]:
|
|
|
|
test = []
|
|
y = 10
|
|
for j in range(7):
|
|
r = 28 + j * 4
|
|
mr = r * math.sqrt(2)
|
|
y += mr * 1.8
|
|
test += [(str(deg) + "abcdefgh"[j], (50 + deg * 11, y), math.pi * deg / 180, r) for deg in range(0, 90, 10)]
|
|
|
|
for (msg, (x, y), angle, r) in test:
|
|
map = cv.CreateMat(2, 3, cv.CV_32FC1)
|
|
corners = [(x + r * math.cos(angle + th), y + r * math.sin(angle + th)) for th in [0, math.pi / 2, math.pi, 3 * math.pi / 4]]
|
|
src = mkdmtx(msg)
|
|
(sx, sy) = cv.GetSize(src)
|
|
cv.GetAffineTransform([(0,0), (sx, 0), (sx, sy)], corners[:3], map)
|
|
temp = cv.CreateMat(bg.rows, bg.cols, cv.CV_8UC3)
|
|
cv.Set(temp, cv.RGB(0, 0, 0))
|
|
cv.WarpAffine(src, temp, map)
|
|
cv.Or(temp, bg, bg)
|
|
|
|
|
|
cv.ShowImage("comp", bg)
|
|
scribble = cv.CloneMat(bg)
|
|
|
|
if 0:
|
|
for i in range(10):
|
|
df.find(bg)
|
|
|
|
for (sym, coords) in df.find(bg).items():
|
|
print sym
|
|
cv.PolyLine(scribble, [coords], 1, cv.CV_RGB(255, 0,0), 1, lineType = cv.CV_AA)
|
|
Xs = [x for (x, y) in coords]
|
|
Ys = [y for (x, y) in coords]
|
|
where = ((min(Xs) + max(Xs)) / 2, max(Ys) - 50)
|
|
cv.PutText(scribble, sym, where, font, cv.RGB(0,255, 0))
|
|
|
|
cv.ShowImage("results", scribble)
|
|
cv.WaitKey()
|
|
cv.DestroyAllWindows()
|
|
|
|
sys.exit(0)
|
|
|
|
capture = cv.CaptureFromCAM(0)
|
|
while True:
|
|
img = cv.QueryFrame(capture)
|
|
cv.ShowImage("capture", img)
|
|
print df.find(img)
|
|
cv.WaitKey(6)
|