opencv/apps/interactive-calibration/calibController.cpp
Vadim Pisarevsky d6c699c014 calib3d module in opencv is split into 3 modules: 3d, calib and stereo.
stereo module in opencv_contrib is renamed to xstereo
2020-12-01 23:42:15 +03:00

338 lines
14 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "calibController.hpp"
#include <algorithm>
#include <cmath>
#include <ctime>
#include <opencv2/3d.hpp>
#include <opencv2/calib.hpp>
#include <opencv2/imgproc.hpp>
using namespace cv;
double calib::calibController::estimateCoverageQuality()
{
int gridSize = 10;
int xGridStep = mCalibData->imageSize.width / gridSize;
int yGridStep = mCalibData->imageSize.height / gridSize;
std::vector<int> pointsInCell(gridSize*gridSize);
std::fill(pointsInCell.begin(), pointsInCell.end(), 0);
for(std::vector<std::vector<cv::Point2f> >::iterator it = mCalibData->imagePoints.begin(); it != mCalibData->imagePoints.end(); ++it)
for(std::vector<cv::Point2f>::iterator pointIt = (*it).begin(); pointIt != (*it).end(); ++pointIt) {
int i = (int)((*pointIt).x / xGridStep);
int j = (int)((*pointIt).y / yGridStep);
pointsInCell[i*gridSize + j]++;
}
for(std::vector<cv::Mat>::iterator it = mCalibData->allCharucoCorners.begin(); it != mCalibData->allCharucoCorners.end(); ++it)
for(int l = 0; l < (*it).size[0]; l++) {
int i = (int)((*it).at<float>(l, 0) / xGridStep);
int j = (int)((*it).at<float>(l, 1) / yGridStep);
pointsInCell[i*gridSize + j]++;
}
cv::Mat mean, stdDev;
cv::meanStdDev(pointsInCell, mean, stdDev);
return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7);
}
calib::calibController::calibController()
{
mCalibFlags = 0;
}
calib::calibController::calibController(cv::Ptr<calib::calibrationData> data, int initialFlags, bool autoTuning, int minFramesNum) :
mCalibData(data)
{
mCalibFlags = initialFlags;
mNeedTuning = autoTuning;
mMinFramesNum = minFramesNum;
mConfIntervalsState = false;
mCoverageQualityState = false;
}
void calib::calibController::updateState()
{
if(mCalibData->cameraMatrix.total()) {
const double relErrEps = 0.05;
bool fConfState = false, cConfState = false, dConfState = true;
if(sigmaMult*mCalibData->stdDeviations.at<double>(0) / mCalibData->cameraMatrix.at<double>(0,0) < relErrEps &&
sigmaMult*mCalibData->stdDeviations.at<double>(1) / mCalibData->cameraMatrix.at<double>(1,1) < relErrEps)
fConfState = true;
if(sigmaMult*mCalibData->stdDeviations.at<double>(2) / mCalibData->cameraMatrix.at<double>(0,2) < relErrEps &&
sigmaMult*mCalibData->stdDeviations.at<double>(3) / mCalibData->cameraMatrix.at<double>(1,2) < relErrEps)
cConfState = true;
for(int i = 0; i < 5; i++)
if(mCalibData->stdDeviations.at<double>(4+i) / fabs(mCalibData->distCoeffs.at<double>(i)) > 1)
dConfState = false;
mConfIntervalsState = fConfState && cConfState && dConfState;
}
if(getFramesNumberState())
mCoverageQualityState = estimateCoverageQuality() > 1.8 ? true : false;
if (getFramesNumberState() && mNeedTuning) {
if( !(mCalibFlags & cv::CALIB_FIX_ASPECT_RATIO) &&
mCalibData->cameraMatrix.total()) {
double fDiff = fabs(mCalibData->cameraMatrix.at<double>(0,0) -
mCalibData->cameraMatrix.at<double>(1,1));
if (fDiff < 3*mCalibData->stdDeviations.at<double>(0) &&
fDiff < 3*mCalibData->stdDeviations.at<double>(1)) {
mCalibFlags |= cv::CALIB_FIX_ASPECT_RATIO;
mCalibData->cameraMatrix.at<double>(0,0) =
mCalibData->cameraMatrix.at<double>(1,1);
}
}
if(!(mCalibFlags & cv::CALIB_ZERO_TANGENT_DIST)) {
const double eps = 0.005;
if(fabs(mCalibData->distCoeffs.at<double>(2)) < eps &&
fabs(mCalibData->distCoeffs.at<double>(3)) < eps)
mCalibFlags |= cv::CALIB_ZERO_TANGENT_DIST;
}
if(!(mCalibFlags & cv::CALIB_FIX_K1)) {
const double eps = 0.005;
if(fabs(mCalibData->distCoeffs.at<double>(0)) < eps)
mCalibFlags |= cv::CALIB_FIX_K1;
}
if(!(mCalibFlags & cv::CALIB_FIX_K2)) {
const double eps = 0.005;
if(fabs(mCalibData->distCoeffs.at<double>(1)) < eps)
mCalibFlags |= cv::CALIB_FIX_K2;
}
if(!(mCalibFlags & cv::CALIB_FIX_K3)) {
const double eps = 0.005;
if(fabs(mCalibData->distCoeffs.at<double>(4)) < eps)
mCalibFlags |= cv::CALIB_FIX_K3;
}
}
}
bool calib::calibController::getCommonCalibrationState() const
{
int rating = (int)getFramesNumberState() + (int)getConfidenceIntrervalsState() +
(int)getRMSState() + (int)mCoverageQualityState;
return rating == 4;
}
bool calib::calibController::getFramesNumberState() const
{
return std::max(mCalibData->imagePoints.size(), mCalibData->allCharucoCorners.size()) > mMinFramesNum;
}
bool calib::calibController::getConfidenceIntrervalsState() const
{
return mConfIntervalsState;
}
bool calib::calibController::getRMSState() const
{
return mCalibData->totalAvgErr < 0.5;
}
int calib::calibController::getNewFlags() const
{
return mCalibFlags;
}
//////////////////// calibDataController
double calib::calibDataController::estimateGridSubsetQuality(size_t excludedIndex)
{
{
int gridSize = 10;
int xGridStep = mCalibData->imageSize.width / gridSize;
int yGridStep = mCalibData->imageSize.height / gridSize;
std::vector<int> pointsInCell(gridSize*gridSize);
std::fill(pointsInCell.begin(), pointsInCell.end(), 0);
for(size_t k = 0; k < mCalibData->imagePoints.size(); k++)
if(k != excludedIndex)
for(std::vector<cv::Point2f>::iterator pointIt = mCalibData->imagePoints[k].begin(); pointIt != mCalibData->imagePoints[k].end(); ++pointIt) {
int i = (int)((*pointIt).x / xGridStep);
int j = (int)((*pointIt).y / yGridStep);
pointsInCell[i*gridSize + j]++;
}
for(size_t k = 0; k < mCalibData->allCharucoCorners.size(); k++)
if(k != excludedIndex)
for(int l = 0; l < mCalibData->allCharucoCorners[k].size[0]; l++) {
int i = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 0) / xGridStep);
int j = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 1) / yGridStep);
pointsInCell[i*gridSize + j]++;
}
cv::Mat mean, stdDev;
cv::meanStdDev(pointsInCell, mean, stdDev);
return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7);
}
}
calib::calibDataController::calibDataController(cv::Ptr<calib::calibrationData> data, int maxFrames, double convParameter) :
mCalibData(data), mParamsFileName("CamParams.xml")
{
mMaxFramesNum = maxFrames;
mAlpha = convParameter;
}
calib::calibDataController::calibDataController()
{
}
void calib::calibDataController::filterFrames()
{
size_t numberOfFrames = std::max(mCalibData->allCharucoIds.size(), mCalibData->imagePoints.size());
CV_Assert(numberOfFrames == mCalibData->perViewErrors.total());
if(numberOfFrames >= mMaxFramesNum) {
double worstValue = -HUGE_VAL, maxQuality = estimateGridSubsetQuality(numberOfFrames);
size_t worstElemIndex = 0;
for(size_t i = 0; i < numberOfFrames; i++) {
double gridQDelta = estimateGridSubsetQuality(i) - maxQuality;
double currentValue = mCalibData->perViewErrors.at<double>((int)i)*mAlpha + gridQDelta*(1. - mAlpha);
if(currentValue > worstValue) {
worstValue = currentValue;
worstElemIndex = i;
}
}
showOverlayMessage(cv::format("Frame %zu is worst", worstElemIndex + 1));
if(mCalibData->imagePoints.size()) {
mCalibData->imagePoints.erase(mCalibData->imagePoints.begin() + worstElemIndex);
mCalibData->objectPoints.erase(mCalibData->objectPoints.begin() + worstElemIndex);
}
else {
mCalibData->allCharucoCorners.erase(mCalibData->allCharucoCorners.begin() + worstElemIndex);
mCalibData->allCharucoIds.erase(mCalibData->allCharucoIds.begin() + worstElemIndex);
}
cv::Mat newErrorsVec = cv::Mat((int)numberOfFrames - 1, 1, CV_64F);
std::copy(mCalibData->perViewErrors.ptr<double>(0),
mCalibData->perViewErrors.ptr<double>((int)worstElemIndex), newErrorsVec.ptr<double>(0));
if((int)worstElemIndex < (int)numberOfFrames-1) {
std::copy(mCalibData->perViewErrors.ptr<double>((int)worstElemIndex + 1), mCalibData->perViewErrors.ptr<double>((int)numberOfFrames),
newErrorsVec.ptr<double>((int)worstElemIndex));
}
mCalibData->perViewErrors = newErrorsVec;
}
}
void calib::calibDataController::setParametersFileName(const std::string &name)
{
mParamsFileName = name;
}
void calib::calibDataController::deleteLastFrame()
{
if( !mCalibData->imagePoints.empty()) {
mCalibData->imagePoints.pop_back();
mCalibData->objectPoints.pop_back();
}
if (!mCalibData->allCharucoCorners.empty()) {
mCalibData->allCharucoCorners.pop_back();
mCalibData->allCharucoIds.pop_back();
}
if(!mParamsStack.empty()) {
mCalibData->cameraMatrix = (mParamsStack.top()).cameraMatrix;
mCalibData->distCoeffs = (mParamsStack.top()).distCoeffs;
mCalibData->stdDeviations = (mParamsStack.top()).stdDeviations;
mCalibData->totalAvgErr = (mParamsStack.top()).avgError;
mParamsStack.pop();
}
}
void calib::calibDataController::rememberCurrentParameters()
{
cv::Mat oldCameraMat, oldDistcoeefs, oldStdDevs;
mCalibData->cameraMatrix.copyTo(oldCameraMat);
mCalibData->distCoeffs.copyTo(oldDistcoeefs);
mCalibData->stdDeviations.copyTo(oldStdDevs);
mParamsStack.push(cameraParameters(oldCameraMat, oldDistcoeefs, oldStdDevs, mCalibData->totalAvgErr));
}
void calib::calibDataController::deleteAllData()
{
mCalibData->imagePoints.clear();
mCalibData->objectPoints.clear();
mCalibData->allCharucoCorners.clear();
mCalibData->allCharucoIds.clear();
mCalibData->cameraMatrix = mCalibData->distCoeffs = cv::Mat();
mParamsStack = std::stack<cameraParameters>();
rememberCurrentParameters();
}
bool calib::calibDataController::saveCurrentCameraParameters() const
{
bool success = false;
if(mCalibData->cameraMatrix.total()) {
cv::FileStorage parametersWriter(mParamsFileName, cv::FileStorage::WRITE);
if(parametersWriter.isOpened()) {
time_t rawtime;
time(&rawtime);
char buf[256];
strftime(buf, sizeof(buf)-1, "%c", localtime(&rawtime));
parametersWriter << "calibrationDate" << buf;
parametersWriter << "framesCount" << std::max((int)mCalibData->objectPoints.size(), (int)mCalibData->allCharucoCorners.size());
parametersWriter << "cameraResolution" << mCalibData->imageSize;
parametersWriter << "cameraMatrix" << mCalibData->cameraMatrix;
parametersWriter << "cameraMatrix_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(0, 4));
parametersWriter << "dist_coeffs" << mCalibData->distCoeffs;
parametersWriter << "dist_coeffs_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(4, 9));
parametersWriter << "avg_reprojection_error" << mCalibData->totalAvgErr;
parametersWriter.release();
success = true;
}
}
return success;
}
void calib::calibDataController::printParametersToConsole(std::ostream &output) const
{
const char* border = "---------------------------------------------------";
output << border << std::endl;
output << "Frames used for calibration: " << std::max(mCalibData->objectPoints.size(), mCalibData->allCharucoCorners.size())
<< " \t RMS = " << mCalibData->totalAvgErr << std::endl;
if(mCalibData->cameraMatrix.at<double>(0,0) == mCalibData->cameraMatrix.at<double>(1,1))
output << "F = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl;
else
output << "Fx = " << mCalibData->cameraMatrix.at<double>(0,0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(0) << " \t "
<< "Fy = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl;
output << "Cx = " << mCalibData->cameraMatrix.at<double>(0,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(2) << " \t"
<< "Cy = " << mCalibData->cameraMatrix.at<double>(1,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(3) << std::endl;
output << "K1 = " << mCalibData->distCoeffs.at<double>(0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(4) << std::endl;
output << "K2 = " << mCalibData->distCoeffs.at<double>(1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(5) << std::endl;
output << "K3 = " << mCalibData->distCoeffs.at<double>(4) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(8) << std::endl;
output << "TD1 = " << mCalibData->distCoeffs.at<double>(2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(6) << std::endl;
output << "TD2 = " << mCalibData->distCoeffs.at<double>(3) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(7) << std::endl;
}
void calib::calibDataController::updateUndistortMap()
{
cv::initUndistortRectifyMap(mCalibData->cameraMatrix, mCalibData->distCoeffs, cv::noArray(),
cv::getOptimalNewCameraMatrix(mCalibData->cameraMatrix, mCalibData->distCoeffs, mCalibData->imageSize, 0.0, mCalibData->imageSize),
mCalibData->imageSize, CV_16SC2, mCalibData->undistMap1, mCalibData->undistMap2);
}