mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
a3a09cf4d1
* added DenseOpticalFlow interface * moved OpticalFlowDual_TVL1 to src folder
938 lines
28 KiB
C++
938 lines
28 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*
|
|
//
|
|
// This implementation is based on Javier Sánchez Pérez <jsanchez@dis.ulpgc.es> implementation.
|
|
// Original BSD license:
|
|
//
|
|
// Copyright (c) 2011, Javier Sánchez Pérez, Enric Meinhardt Llopis
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice, this
|
|
// list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
namespace {
|
|
|
|
class OpticalFlowDual_TVL1 : public DenseOpticalFlow
|
|
{
|
|
public:
|
|
OpticalFlowDual_TVL1();
|
|
|
|
void calc(InputArray I0, InputArray I1, InputOutputArray flow);
|
|
void collectGarbage();
|
|
|
|
AlgorithmInfo* info() const;
|
|
|
|
protected:
|
|
double tau;
|
|
double lambda;
|
|
double theta;
|
|
int nscales;
|
|
int warps;
|
|
double epsilon;
|
|
int iterations;
|
|
bool useInitialFlow;
|
|
|
|
private:
|
|
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2);
|
|
|
|
std::vector<Mat_<float> > I0s;
|
|
std::vector<Mat_<float> > I1s;
|
|
std::vector<Mat_<float> > u1s;
|
|
std::vector<Mat_<float> > u2s;
|
|
|
|
Mat_<float> I1x_buf;
|
|
Mat_<float> I1y_buf;
|
|
|
|
Mat_<float> flowMap1_buf;
|
|
Mat_<float> flowMap2_buf;
|
|
|
|
Mat_<float> I1w_buf;
|
|
Mat_<float> I1wx_buf;
|
|
Mat_<float> I1wy_buf;
|
|
|
|
Mat_<float> grad_buf;
|
|
Mat_<float> rho_c_buf;
|
|
|
|
Mat_<float> v1_buf;
|
|
Mat_<float> v2_buf;
|
|
|
|
Mat_<float> p11_buf;
|
|
Mat_<float> p12_buf;
|
|
Mat_<float> p21_buf;
|
|
Mat_<float> p22_buf;
|
|
|
|
Mat_<float> div_p1_buf;
|
|
Mat_<float> div_p2_buf;
|
|
|
|
Mat_<float> u1x_buf;
|
|
Mat_<float> u1y_buf;
|
|
Mat_<float> u2x_buf;
|
|
Mat_<float> u2y_buf;
|
|
};
|
|
|
|
OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
|
|
{
|
|
tau = 0.25;
|
|
lambda = 0.15;
|
|
theta = 0.3;
|
|
nscales = 5;
|
|
warps = 5;
|
|
epsilon = 0.01;
|
|
iterations = 300;
|
|
useInitialFlow = false;
|
|
}
|
|
|
|
void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow)
|
|
{
|
|
Mat I0 = _I0.getMat();
|
|
Mat I1 = _I1.getMat();
|
|
|
|
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
|
|
CV_Assert( I0.size() == I1.size() );
|
|
CV_Assert( I0.type() == I1.type() );
|
|
CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) );
|
|
CV_Assert( nscales > 0 );
|
|
|
|
// allocate memory for the pyramid structure
|
|
I0s.resize(nscales);
|
|
I1s.resize(nscales);
|
|
u1s.resize(nscales);
|
|
u2s.resize(nscales);
|
|
|
|
I0.convertTo(I0s[0], I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
|
|
I1.convertTo(I1s[0], I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
|
|
|
|
if (useInitialFlow)
|
|
{
|
|
u1s[0].create(I0.size());
|
|
u2s[0].create(I0.size());
|
|
|
|
Mat_<float> mv[] = {u1s[0], u2s[0]};
|
|
|
|
split(_flow.getMat(), mv);
|
|
}
|
|
|
|
I1x_buf.create(I0.size());
|
|
I1y_buf.create(I0.size());
|
|
|
|
flowMap1_buf.create(I0.size());
|
|
flowMap2_buf.create(I0.size());
|
|
|
|
I1w_buf.create(I0.size());
|
|
I1wx_buf.create(I0.size());
|
|
I1wy_buf.create(I0.size());
|
|
|
|
grad_buf.create(I0.size());
|
|
rho_c_buf.create(I0.size());
|
|
|
|
v1_buf.create(I0.size());
|
|
v2_buf.create(I0.size());
|
|
|
|
p11_buf.create(I0.size());
|
|
p12_buf.create(I0.size());
|
|
p21_buf.create(I0.size());
|
|
p22_buf.create(I0.size());
|
|
|
|
div_p1_buf.create(I0.size());
|
|
div_p2_buf.create(I0.size());
|
|
|
|
u1x_buf.create(I0.size());
|
|
u1y_buf.create(I0.size());
|
|
u2x_buf.create(I0.size());
|
|
u2y_buf.create(I0.size());
|
|
|
|
// create the scales
|
|
for (int s = 1; s < nscales; ++s)
|
|
{
|
|
pyrDown(I0s[s - 1], I0s[s]);
|
|
pyrDown(I1s[s - 1], I1s[s]);
|
|
|
|
if (I0s[s].cols < 16 || I0s[s].rows < 16)
|
|
{
|
|
nscales = s;
|
|
break;
|
|
}
|
|
|
|
if (useInitialFlow)
|
|
{
|
|
pyrDown(u1s[s - 1], u1s[s]);
|
|
pyrDown(u2s[s - 1], u2s[s]);
|
|
|
|
multiply(u1s[s], Scalar::all(0.5), u1s[s]);
|
|
multiply(u2s[s], Scalar::all(0.5), u2s[s]);
|
|
}
|
|
}
|
|
|
|
// pyramidal structure for computing the optical flow
|
|
for (int s = nscales - 1; s >= 0; --s)
|
|
{
|
|
// compute the optical flow at the current scale
|
|
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
|
|
|
|
// if this was the last scale, finish now
|
|
if (s == 0)
|
|
break;
|
|
|
|
// otherwise, upsample the optical flow
|
|
|
|
// zoom the optical flow for the next finer scale
|
|
resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
|
|
resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
|
|
|
|
// scale the optical flow with the appropriate zoom factor
|
|
multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]);
|
|
multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]);
|
|
}
|
|
|
|
Mat uxy[] = {u1s[0], u2s[0]};
|
|
merge(uxy, 2, _flow);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// buildFlowMap
|
|
|
|
struct BuildFlowMapBody : ParallelLoopBody
|
|
{
|
|
void operator() (const Range& range) const;
|
|
|
|
Mat_<float> u1;
|
|
Mat_<float> u2;
|
|
mutable Mat_<float> map1;
|
|
mutable Mat_<float> map2;
|
|
};
|
|
|
|
void BuildFlowMapBody::operator() (const Range& range) const
|
|
{
|
|
for (int y = range.start; y < range.end; ++y)
|
|
{
|
|
const float* u1Row = u1[y];
|
|
const float* u2Row = u2[y];
|
|
|
|
float* map1Row = map1[y];
|
|
float* map2Row = map2[y];
|
|
|
|
for (int x = 0; x < u1.cols; ++x)
|
|
{
|
|
map1Row[x] = x + u1Row[x];
|
|
map2Row[x] = y + u2Row[x];
|
|
}
|
|
}
|
|
}
|
|
|
|
void buildFlowMap(const Mat_<float>& u1, const Mat_<float>& u2, Mat_<float>& map1, Mat_<float>& map2)
|
|
{
|
|
CV_DbgAssert( u2.size() == u1.size() );
|
|
CV_DbgAssert( map1.size() == u1.size() );
|
|
CV_DbgAssert( map2.size() == u1.size() );
|
|
|
|
BuildFlowMapBody body;
|
|
|
|
body.u1 = u1;
|
|
body.u2 = u2;
|
|
body.map1 = map1;
|
|
body.map2 = map2;
|
|
|
|
parallel_for_(Range(0, u1.rows), body);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// centeredGradient
|
|
|
|
struct CenteredGradientBody : ParallelLoopBody
|
|
{
|
|
void operator() (const Range& range) const;
|
|
|
|
Mat_<float> src;
|
|
mutable Mat_<float> dx;
|
|
mutable Mat_<float> dy;
|
|
};
|
|
|
|
void CenteredGradientBody::operator() (const Range& range) const
|
|
{
|
|
const int last_col = src.cols - 1;
|
|
|
|
for (int y = range.start; y < range.end; ++y)
|
|
{
|
|
const float* srcPrevRow = src[y - 1];
|
|
const float* srcCurRow = src[y];
|
|
const float* srcNextRow = src[y + 1];
|
|
|
|
float* dxRow = dx[y];
|
|
float* dyRow = dy[y];
|
|
|
|
for (int x = 1; x < last_col; ++x)
|
|
{
|
|
dxRow[x] = 0.5f * (srcCurRow[x + 1] - srcCurRow[x - 1]);
|
|
dyRow[x] = 0.5f * (srcNextRow[x] - srcPrevRow[x]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void centeredGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
|
|
{
|
|
CV_DbgAssert( src.rows > 2 && src.cols > 2 );
|
|
CV_DbgAssert( dx.size() == src.size() );
|
|
CV_DbgAssert( dy.size() == src.size() );
|
|
|
|
const int last_row = src.rows - 1;
|
|
const int last_col = src.cols - 1;
|
|
|
|
// compute the gradient on the center body of the image
|
|
{
|
|
CenteredGradientBody body;
|
|
|
|
body.src = src;
|
|
body.dx = dx;
|
|
body.dy = dy;
|
|
|
|
parallel_for_(Range(1, last_row), body);
|
|
}
|
|
|
|
// compute the gradient on the first and last rows
|
|
for (int x = 1; x < last_col; ++x)
|
|
{
|
|
dx(0, x) = 0.5f * (src(0, x + 1) - src(0, x - 1));
|
|
dy(0, x) = 0.5f * (src(1, x) - src(0, x));
|
|
|
|
dx(last_row, x) = 0.5f * (src(last_row, x + 1) - src(last_row, x - 1));
|
|
dy(last_row, x) = 0.5f * (src(last_row, x) - src(last_row - 1, x));
|
|
}
|
|
|
|
// compute the gradient on the first and last columns
|
|
for (int y = 1; y < last_row; ++y)
|
|
{
|
|
dx(y, 0) = 0.5f * (src(y, 1) - src(y, 0));
|
|
dy(y, 0) = 0.5f * (src(y + 1, 0) - src(y - 1, 0));
|
|
|
|
dx(y, last_col) = 0.5f * (src(y, last_col) - src(y, last_col - 1));
|
|
dy(y, last_col) = 0.5f * (src(y + 1, last_col) - src(y - 1, last_col));
|
|
}
|
|
|
|
// compute the gradient at the four corners
|
|
dx(0, 0) = 0.5f * (src(0, 1) - src(0, 0));
|
|
dy(0, 0) = 0.5f * (src(1, 0) - src(0, 0));
|
|
|
|
dx(0, last_col) = 0.5f * (src(0, last_col) - src(0, last_col - 1));
|
|
dy(0, last_col) = 0.5f * (src(1, last_col) - src(0, last_col));
|
|
|
|
dx(last_row, 0) = 0.5f * (src(last_row, 1) - src(last_row, 0));
|
|
dy(last_row, 0) = 0.5f * (src(last_row, 0) - src(last_row - 1, 0));
|
|
|
|
dx(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row, last_col - 1));
|
|
dy(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row - 1, last_col));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// forwardGradient
|
|
|
|
struct ForwardGradientBody : ParallelLoopBody
|
|
{
|
|
void operator() (const Range& range) const;
|
|
|
|
Mat_<float> src;
|
|
mutable Mat_<float> dx;
|
|
mutable Mat_<float> dy;
|
|
};
|
|
|
|
void ForwardGradientBody::operator() (const Range& range) const
|
|
{
|
|
const int last_col = src.cols - 1;
|
|
|
|
for (int y = range.start; y < range.end; ++y)
|
|
{
|
|
const float* srcCurRow = src[y];
|
|
const float* srcNextRow = src[y + 1];
|
|
|
|
float* dxRow = dx[y];
|
|
float* dyRow = dy[y];
|
|
|
|
for (int x = 0; x < last_col; ++x)
|
|
{
|
|
dxRow[x] = srcCurRow[x + 1] - srcCurRow[x];
|
|
dyRow[x] = srcNextRow[x] - srcCurRow[x];
|
|
}
|
|
}
|
|
}
|
|
|
|
void forwardGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
|
|
{
|
|
CV_DbgAssert( src.rows > 2 && src.cols > 2 );
|
|
CV_DbgAssert( dx.size() == src.size() );
|
|
CV_DbgAssert( dy.size() == src.size() );
|
|
|
|
const int last_row = src.rows - 1;
|
|
const int last_col = src.cols - 1;
|
|
|
|
// compute the gradient on the central body of the image
|
|
{
|
|
ForwardGradientBody body;
|
|
|
|
body.src = src;
|
|
body.dx = dx;
|
|
body.dy = dy;
|
|
|
|
parallel_for_(Range(0, last_row), body);
|
|
}
|
|
|
|
// compute the gradient on the last row
|
|
for (int x = 0; x < last_col; ++x)
|
|
{
|
|
dx(last_row, x) = src(last_row, x + 1) - src(last_row, x);
|
|
dy(last_row, x) = 0.0f;
|
|
}
|
|
|
|
// compute the gradient on the last column
|
|
for (int y = 0; y < last_row; ++y)
|
|
{
|
|
dx(y, last_col) = 0.0f;
|
|
dy(y, last_col) = src(y + 1, last_col) - src(y, last_col);
|
|
}
|
|
|
|
dx(last_row, last_col) = 0.0f;
|
|
dy(last_row, last_col) = 0.0f;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// divergence
|
|
|
|
struct DivergenceBody : ParallelLoopBody
|
|
{
|
|
void operator() (const Range& range) const;
|
|
|
|
Mat_<float> v1;
|
|
Mat_<float> v2;
|
|
mutable Mat_<float> div;
|
|
};
|
|
|
|
void DivergenceBody::operator() (const Range& range) const
|
|
{
|
|
for (int y = range.start; y < range.end; ++y)
|
|
{
|
|
const float* v1Row = v1[y];
|
|
const float* v2PrevRow = v2[y - 1];
|
|
const float* v2CurRow = v2[y];
|
|
|
|
float* divRow = div[y];
|
|
|
|
for(int x = 1; x < v1.cols; ++x)
|
|
{
|
|
const float v1x = v1Row[x] - v1Row[x - 1];
|
|
const float v2y = v2CurRow[x] - v2PrevRow[x];
|
|
|
|
divRow[x] = v1x + v2y;
|
|
}
|
|
}
|
|
}
|
|
|
|
void divergence(const Mat_<float>& v1, const Mat_<float>& v2, Mat_<float>& div)
|
|
{
|
|
CV_DbgAssert( v1.rows > 2 && v1.cols > 2 );
|
|
CV_DbgAssert( v2.size() == v1.size() );
|
|
CV_DbgAssert( div.size() == v1.size() );
|
|
|
|
{
|
|
DivergenceBody body;
|
|
|
|
body.v1 = v1;
|
|
body.v2 = v2;
|
|
body.div = div;
|
|
|
|
parallel_for_(Range(1, v1.rows), body);
|
|
}
|
|
|
|
// compute the divergence on the first row
|
|
for(int x = 1; x < v1.cols; ++x)
|
|
div(0, x) = v1(0, x) - v1(0, x - 1) + v2(0, x);
|
|
|
|
// compute the divergence on the first column
|
|
for (int y = 1; y < v1.rows; ++y)
|
|
div(y, 0) = v1(y, 0) + v2(y, 0) - v2(y - 1, 0);
|
|
|
|
div(0, 0) = v1(0, 0) + v2(0, 0);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// calcGradRho
|
|
|
|
struct CalcGradRhoBody : ParallelLoopBody
|
|
{
|
|
void operator() (const Range& range) const;
|
|
|
|
Mat_<float> I0;
|
|
Mat_<float> I1w;
|
|
Mat_<float> I1wx;
|
|
Mat_<float> I1wy;
|
|
Mat_<float> u1;
|
|
Mat_<float> u2;
|
|
mutable Mat_<float> grad;
|
|
mutable Mat_<float> rho_c;
|
|
};
|
|
|
|
void CalcGradRhoBody::operator() (const Range& range) const
|
|
{
|
|
for (int y = range.start; y < range.end; ++y)
|
|
{
|
|
const float* I0Row = I0[y];
|
|
const float* I1wRow = I1w[y];
|
|
const float* I1wxRow = I1wx[y];
|
|
const float* I1wyRow = I1wy[y];
|
|
const float* u1Row = u1[y];
|
|
const float* u2Row = u2[y];
|
|
|
|
float* gradRow = grad[y];
|
|
float* rhoRow = rho_c[y];
|
|
|
|
for (int x = 0; x < I0.cols; ++x)
|
|
{
|
|
const float Ix2 = I1wxRow[x] * I1wxRow[x];
|
|
const float Iy2 = I1wyRow[x] * I1wyRow[x];
|
|
|
|
// store the |Grad(I1)|^2
|
|
gradRow[x] = Ix2 + Iy2;
|
|
|
|
// compute the constant part of the rho function
|
|
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void calcGradRho(const Mat_<float>& I0, const Mat_<float>& I1w, const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2,
|
|
Mat_<float>& grad, Mat_<float>& rho_c)
|
|
{
|
|
CV_DbgAssert( I1w.size() == I0.size() );
|
|
CV_DbgAssert( I1wx.size() == I0.size() );
|
|
CV_DbgAssert( I1wy.size() == I0.size() );
|
|
CV_DbgAssert( u1.size() == I0.size() );
|
|
CV_DbgAssert( u2.size() == I0.size() );
|
|
CV_DbgAssert( grad.size() == I0.size() );
|
|
CV_DbgAssert( rho_c.size() == I0.size() );
|
|
|
|
CalcGradRhoBody body;
|
|
|
|
body.I0 = I0;
|
|
body.I1w = I1w;
|
|
body.I1wx = I1wx;
|
|
body.I1wy = I1wy;
|
|
body.u1 = u1;
|
|
body.u2 = u2;
|
|
body.grad = grad;
|
|
body.rho_c = rho_c;
|
|
|
|
parallel_for_(Range(0, I0.rows), body);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// estimateV
|
|
|
|
struct EstimateVBody : ParallelLoopBody
|
|
{
|
|
void operator() (const Range& range) const;
|
|
|
|
Mat_<float> I1wx;
|
|
Mat_<float> I1wy;
|
|
Mat_<float> u1;
|
|
Mat_<float> u2;
|
|
Mat_<float> grad;
|
|
Mat_<float> rho_c;
|
|
mutable Mat_<float> v1;
|
|
mutable Mat_<float> v2;
|
|
float l_t;
|
|
};
|
|
|
|
void EstimateVBody::operator() (const Range& range) const
|
|
{
|
|
for (int y = range.start; y < range.end; ++y)
|
|
{
|
|
const float* I1wxRow = I1wx[y];
|
|
const float* I1wyRow = I1wy[y];
|
|
const float* u1Row = u1[y];
|
|
const float* u2Row = u2[y];
|
|
const float* gradRow = grad[y];
|
|
const float* rhoRow = rho_c[y];
|
|
|
|
float* v1Row = v1[y];
|
|
float* v2Row = v2[y];
|
|
|
|
for (int x = 0; x < I1wx.cols; ++x)
|
|
{
|
|
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]);
|
|
|
|
float d1 = 0.0f;
|
|
float d2 = 0.0f;
|
|
|
|
if (rho < -l_t * gradRow[x])
|
|
{
|
|
d1 = l_t * I1wxRow[x];
|
|
d2 = l_t * I1wyRow[x];
|
|
}
|
|
else if (rho > l_t * gradRow[x])
|
|
{
|
|
d1 = -l_t * I1wxRow[x];
|
|
d2 = -l_t * I1wyRow[x];
|
|
}
|
|
else if (gradRow[x] > numeric_limits<float>::epsilon())
|
|
{
|
|
float fi = -rho / gradRow[x];
|
|
d1 = fi * I1wxRow[x];
|
|
d2 = fi * I1wyRow[x];
|
|
}
|
|
|
|
v1Row[x] = u1Row[x] + d1;
|
|
v2Row[x] = u2Row[x] + d2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c,
|
|
Mat_<float>& v1, Mat_<float>& v2, float l_t)
|
|
{
|
|
CV_DbgAssert( I1wy.size() == I1wx.size() );
|
|
CV_DbgAssert( u1.size() == I1wx.size() );
|
|
CV_DbgAssert( u2.size() == I1wx.size() );
|
|
CV_DbgAssert( grad.size() == I1wx.size() );
|
|
CV_DbgAssert( rho_c.size() == I1wx.size() );
|
|
CV_DbgAssert( v1.size() == I1wx.size() );
|
|
CV_DbgAssert( v2.size() == I1wx.size() );
|
|
|
|
EstimateVBody body;
|
|
|
|
body.I1wx = I1wx;
|
|
body.I1wy = I1wy;
|
|
body.u1 = u1;
|
|
body.u2 = u2;
|
|
body.grad = grad;
|
|
body.rho_c = rho_c;
|
|
body.v1 = v1;
|
|
body.v2 = v2;
|
|
body.l_t = l_t;
|
|
|
|
parallel_for_(Range(0, I1wx.rows), body);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// estimateU
|
|
|
|
float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& div_p1, const Mat_<float>& div_p2, Mat_<float>& u1, Mat_<float>& u2, float theta)
|
|
{
|
|
CV_DbgAssert( v2.size() == v1.size() );
|
|
CV_DbgAssert( div_p1.size() == v1.size() );
|
|
CV_DbgAssert( div_p2.size() == v1.size() );
|
|
CV_DbgAssert( u1.size() == v1.size() );
|
|
CV_DbgAssert( u2.size() == v1.size() );
|
|
|
|
float error = 0.0f;
|
|
for (int y = 0; y < v1.rows; ++y)
|
|
{
|
|
const float* v1Row = v1[y];
|
|
const float* v2Row = v2[y];
|
|
const float* divP1Row = div_p1[y];
|
|
const float* divP2Row = div_p2[y];
|
|
|
|
float* u1Row = u1[y];
|
|
float* u2Row = u2[y];
|
|
|
|
for (int x = 0; x < v1.cols; ++x)
|
|
{
|
|
const float u1k = u1Row[x];
|
|
const float u2k = u2Row[x];
|
|
|
|
u1Row[x] = v1Row[x] + theta * divP1Row[x];
|
|
u2Row[x] = v2Row[x] + theta * divP2Row[x];
|
|
|
|
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// estimateDualVariables
|
|
|
|
struct EstimateDualVariablesBody : ParallelLoopBody
|
|
{
|
|
void operator() (const Range& range) const;
|
|
|
|
Mat_<float> u1x;
|
|
Mat_<float> u1y;
|
|
Mat_<float> u2x;
|
|
Mat_<float> u2y;
|
|
mutable Mat_<float> p11;
|
|
mutable Mat_<float> p12;
|
|
mutable Mat_<float> p21;
|
|
mutable Mat_<float> p22;
|
|
float taut;
|
|
};
|
|
|
|
void EstimateDualVariablesBody::operator() (const Range& range) const
|
|
{
|
|
for (int y = range.start; y < range.end; ++y)
|
|
{
|
|
const float* u1xRow = u1x[y];
|
|
const float* u1yRow = u1y[y];
|
|
const float* u2xRow = u2x[y];
|
|
const float* u2yRow = u2y[y];
|
|
|
|
float* p11Row = p11[y];
|
|
float* p12Row = p12[y];
|
|
float* p21Row = p21[y];
|
|
float* p22Row = p22[y];
|
|
|
|
for (int x = 0; x < u1x.cols; ++x)
|
|
{
|
|
const float g1 = static_cast<float>(hypot(u1xRow[x], u1yRow[x]));
|
|
const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x]));
|
|
|
|
const float ng1 = 1.0f + taut * g1;
|
|
const float ng2 = 1.0f + taut * g2;
|
|
|
|
p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1;
|
|
p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1;
|
|
p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2;
|
|
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const Mat_<float>& u2x, const Mat_<float>& u2y,
|
|
Mat_<float>& p11, Mat_<float>& p12, Mat_<float>& p21, Mat_<float>& p22, float taut)
|
|
{
|
|
CV_DbgAssert( u1y.size() == u1x.size() );
|
|
CV_DbgAssert( u2x.size() == u1x.size() );
|
|
CV_DbgAssert( u2y.size() == u1x.size() );
|
|
CV_DbgAssert( p11.size() == u1x.size() );
|
|
CV_DbgAssert( p12.size() == u1x.size() );
|
|
CV_DbgAssert( p21.size() == u1x.size() );
|
|
CV_DbgAssert( p22.size() == u1x.size() );
|
|
|
|
EstimateDualVariablesBody body;
|
|
|
|
body.u1x = u1x;
|
|
body.u1y = u1y;
|
|
body.u2x = u2x;
|
|
body.u2y = u2y;
|
|
body.p11 = p11;
|
|
body.p12 = p12;
|
|
body.p21 = p21;
|
|
body.p22 = p22;
|
|
body.taut = taut;
|
|
|
|
parallel_for_(Range(0, u1x.rows), body);
|
|
}
|
|
|
|
void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2)
|
|
{
|
|
const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area());
|
|
|
|
CV_DbgAssert( I1.size() == I0.size() );
|
|
CV_DbgAssert( I1.type() == I0.type() );
|
|
CV_DbgAssert( u1.empty() || u1.size() == I0.size() );
|
|
CV_DbgAssert( u2.size() == u1.size() );
|
|
|
|
if (u1.empty())
|
|
{
|
|
u1.create(I0.size());
|
|
u1.setTo(Scalar::all(0));
|
|
|
|
u2.create(I0.size());
|
|
u2.setTo(Scalar::all(0));
|
|
}
|
|
|
|
Mat_<float> I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
centeredGradient(I1, I1x, I1y);
|
|
|
|
Mat_<float> flowMap1 = flowMap1_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> flowMap2 = flowMap2_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
|
|
Mat_<float> I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
|
|
Mat_<float> grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
|
|
Mat_<float> v1 = v1_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> v2 = v2_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
|
|
Mat_<float> p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
p11.setTo(Scalar::all(0));
|
|
p12.setTo(Scalar::all(0));
|
|
p21.setTo(Scalar::all(0));
|
|
p22.setTo(Scalar::all(0));
|
|
|
|
Mat_<float> div_p1 = div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> div_p2 = div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
|
|
Mat_<float> u1x = u1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> u1y = u1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> u2x = u2x_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
Mat_<float> u2y = u2y_buf(Rect(0, 0, I0.cols, I0.rows));
|
|
|
|
const float l_t = static_cast<float>(lambda * theta);
|
|
const float taut = static_cast<float>(tau / theta);
|
|
|
|
for (int warpings = 0; warpings < warps; ++warpings)
|
|
{
|
|
// compute the warping of the target image and its derivatives
|
|
buildFlowMap(u1, u2, flowMap1, flowMap2);
|
|
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC);
|
|
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC);
|
|
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC);
|
|
|
|
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c);
|
|
|
|
float error = numeric_limits<float>::max();
|
|
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
|
|
{
|
|
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
|
estimateV(I1wx, I1wy, u1, u2, grad, rho_c, v1, v2, l_t);
|
|
|
|
// compute the divergence of the dual variable (p1, p2)
|
|
divergence(p11, p12, div_p1);
|
|
divergence(p21, p22, div_p2);
|
|
|
|
// estimate the values of the optical flow (u1, u2)
|
|
error = estimateU(v1, v2, div_p1, div_p2, u1, u2, static_cast<float>(theta));
|
|
|
|
// compute the gradient of the optical flow (Du1, Du2)
|
|
forwardGradient(u1, u1x, u1y);
|
|
forwardGradient(u2, u2x, u2y);
|
|
|
|
// estimate the values of the dual variable (p1, p2)
|
|
estimateDualVariables(u1x, u1y, u2x, u2y, p11, p12, p21, p22, taut);
|
|
}
|
|
}
|
|
}
|
|
|
|
void OpticalFlowDual_TVL1::collectGarbage()
|
|
{
|
|
I0s.clear();
|
|
I1s.clear();
|
|
u1s.clear();
|
|
u2s.clear();
|
|
|
|
I1x_buf.release();
|
|
I1y_buf.release();
|
|
|
|
flowMap1_buf.release();
|
|
flowMap2_buf.release();
|
|
|
|
I1w_buf.release();
|
|
I1wx_buf.release();
|
|
I1wy_buf.release();
|
|
|
|
grad_buf.release();
|
|
rho_c_buf.release();
|
|
|
|
v1_buf.release();
|
|
v2_buf.release();
|
|
|
|
p11_buf.release();
|
|
p12_buf.release();
|
|
p21_buf.release();
|
|
p22_buf.release();
|
|
|
|
div_p1_buf.release();
|
|
div_p2_buf.release();
|
|
|
|
u1x_buf.release();
|
|
u1y_buf.release();
|
|
u2x_buf.release();
|
|
u2y_buf.release();
|
|
}
|
|
|
|
CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
|
|
obj.info()->addParam(obj, "tau", obj.tau, false, 0, 0,
|
|
"Time step of the numerical scheme");
|
|
obj.info()->addParam(obj, "lambda", obj.lambda, false, 0, 0,
|
|
"Weight parameter for the data term, attachment parameter");
|
|
obj.info()->addParam(obj, "theta", obj.theta, false, 0, 0,
|
|
"Weight parameter for (u - v)^2, tightness parameter");
|
|
obj.info()->addParam(obj, "nscales", obj.nscales, false, 0, 0,
|
|
"Number of scales used to create the pyramid of images");
|
|
obj.info()->addParam(obj, "warps", obj.warps, false, 0, 0,
|
|
"Number of warpings per scale");
|
|
obj.info()->addParam(obj, "epsilon", obj.epsilon, false, 0, 0,
|
|
"Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time");
|
|
obj.info()->addParam(obj, "iterations", obj.iterations, false, 0, 0,
|
|
"Stopping criterion iterations number used in the numerical scheme");
|
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow));
|
|
|
|
} // namespace
|
|
|
|
Ptr<DenseOpticalFlow> cv::createOptFlow_DualTVL1()
|
|
{
|
|
return new OpticalFlowDual_TVL1;
|
|
}
|