opencv/modules/3d/test/test_normal.cpp
Rostislav Vasilikhin 8b7e586faa
Merge pull request #22598 from savuor:icp_oframe_readonly
Complement PR: #3366@contrib
Changes

    OdometryFrame losts its getters: a user can provide data at construction stage only, pyramids and other generated data is read-only now
    OdometryFrame is based on UMats: no TMat templates inside, CPU operations are done with UMat::getMat() method, chaining issues are solved ad-hoc
    No more Odometry::createOdometryFrame() method, frames are compatible with all odometry algorithms
    Normals computer is cached inside Odometry and exposed to API as well as its settings
    Volume::raycast() won't return the result in OdometryFrame anymore
    Added test for Odometry::prepareFrame*() & other test fixes
    Minor code improvements

TODOs:

    fix TODOs in code
    lower acceptable accuracy errors
2022-10-24 16:34:01 +03:00

724 lines
24 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
#include <opencv2/3d.hpp>
#include <opencv2/core/quaternion.hpp>
namespace opencv_test { namespace {
const int W = 640;
const int H = 480;
//int window_size = 5;
float focal_length = 525;
float cx = W / 2.f + 0.5f;
float cy = H / 2.f + 0.5f;
Mat K = (Mat_<double>(3, 3) << focal_length, 0, cx, 0, focal_length, cy, 0, 0, 1);
Mat Kinv = K.inv();
void points3dToDepth16U(const Mat_<Vec4f>& points3d, Mat& depthMap);
void points3dToDepth16U(const Mat_<Vec4f>& points3d, Mat& depthMap)
{
std::vector<Point3f> points3dvec;
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++)
points3dvec.push_back(Point3f(points3d(i, j)[0], points3d(i, j)[1], points3d(i, j)[2]));
std::vector<Point2f> img_points;
depthMap = Mat::zeros(H, W, CV_32F);
Vec3f R(0.0, 0.0, 0.0);
Vec3f T(0.0, 0.0, 0.0);
cv::projectPoints(points3dvec, R, T, K, Mat(), img_points);
float maxv = 0.f;
int index = 0;
for (int i = 0; i < H; i++)
{
for (int j = 0; j < W; j++)
{
float value = (points3d(i, j))[2]; // value is the z
depthMap.at<float>(cvRound(img_points[index].y), cvRound(img_points[index].x)) = value;
maxv = std::max(maxv, value);
index++;
}
}
double scale = ((1 << 16) - 1) / maxv;
depthMap.convertTo(depthMap, CV_16U, scale);
}
struct Plane
{
public:
Vec4d nd;
Plane() : nd(1, 0, 0, 0) { }
static Plane generate(RNG& rng)
{
// Gaussian 3D distribution is separable and spherically symmetrical
// Being normalized, its points represent uniformly distributed points on a sphere (i.e. normal directions)
double sigma = 1.0;
Vec3d ngauss;
ngauss[0] = rng.gaussian(sigma);
ngauss[1] = rng.gaussian(sigma);
ngauss[2] = rng.gaussian(sigma);
ngauss = ngauss * (1.0 / cv::norm(ngauss));
double d = rng.uniform(-2.0, 2.0);
Plane p;
p.nd = Vec4d(ngauss[0], ngauss[1], ngauss[2], d);
return p;
}
Vec3d pixelIntersection(double u, double v, const Matx33d& K_inv)
{
Vec3d uv1(u, v, 1);
// pixel reprojected to camera space
Matx31d pspace = K_inv * uv1;
double d = this->nd[3];
double dotp = pspace.ddot({this->nd[0], this->nd[1], this->nd[2]});
double d_over_dotp = d / dotp;
if (std::fabs(dotp) <= 1e-9)
{
d_over_dotp = 1.0;
CV_LOG_INFO(NULL, "warning, dotp nearly 0! " << dotp);
}
Matx31d pmeet = pspace * (- d_over_dotp);
return {pmeet(0, 0), pmeet(1, 0), pmeet(2, 0)};
}
};
void gen_points_3d(std::vector<Plane>& planes_out, Mat_<unsigned char> &plane_mask, Mat& points3d, Mat& normals,
int n_planes, float scale, RNG& rng)
{
const double minGoodZ = 0.0001;
const double maxGoodZ = 1000.0;
std::vector<Plane> planes;
for (int i = 0; i < n_planes; i++)
{
bool found = false;
for (int j = 0; j < 100; j++)
{
Plane px = Plane::generate(rng);
// Check that area corners have good z values
// So that they won't break rendering
double x0 = double(i) * double(W) / double(n_planes);
double x1 = double(i+1) * double(W) / double(n_planes);
std::vector<Point2d> corners = {{x0, 0}, {x0, H - 1}, {x1, 0}, {x1, H - 1}};
double minz = std::numeric_limits<double>::max();
double maxz = 0.0;
for (auto p : corners)
{
Vec3d v = px.pixelIntersection(p.x, p.y, Kinv);
minz = std::min(minz, v[2]);
maxz = std::max(maxz, v[2]);
}
if (minz > minGoodZ && maxz < maxGoodZ)
{
planes.push_back(px);
found = true;
break;
}
}
ASSERT_TRUE(found) << "Failed to generate proper random plane" << std::endl;
}
Mat_ < Vec4f > outp(H, W);
Mat_ < Vec4f > outn(H, W);
plane_mask.create(H, W);
// n ( r - r_0) = 0
// n * r_0 = d
//
// r_0 = (0,0,0)
// r[0]
for (int v = 0; v < H; v++)
{
for (int u = 0; u < W; u++)
{
unsigned int plane_index = (unsigned int)((u / float(W)) * planes.size());
Plane plane = planes[plane_index];
Vec3f pt = Vec3f(plane.pixelIntersection((double)u, (double)v, Kinv) * scale);
outp(v, u) = {pt[0], pt[1], pt[2], 0};
outn(v, u) = {(float)plane.nd[0], (float)plane.nd[1], (float)plane.nd[2], 0};
plane_mask(v, u) = (uchar)plane_index;
}
}
planes_out = planes;
points3d = outp;
normals = outn;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
CV_ENUM(NormalComputers, RgbdNormals::RGBD_NORMALS_METHOD_FALS,
RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD,
RgbdNormals::RGBD_NORMALS_METHOD_SRI,
RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT);
typedef std::tuple<MatDepth, NormalComputers, bool, double, double, double, double, double> NormalsTestData;
typedef std::tuple<NormalsTestData, int> NormalsTestParams;
const double threshold3d1d = 1e-12;
// Right angle is the maximum angle possible between two normals
const double hpi = CV_PI / 2.0;
const int nTestCasesNormals = 5;
class NormalsRandomPlanes : public ::testing::TestWithParam<NormalsTestParams>
{
protected:
void SetUp() override
{
p = GetParam();
depth = std::get<0>(std::get<0>(p));
alg = static_cast<RgbdNormals::RgbdNormalsMethod>(int(std::get<1>(std::get<0>(p))));
scale = std::get<2>(std::get<0>(p));
int idx = std::get<1>(p);
rng = cvtest::TS::ptr()->get_rng();
rng.state += idx + nTestCasesNormals*int(scale) + alg*16 + depth*64;
float diffThreshold = scale ? 100000.f : 50.f;
normalsComputer = RgbdNormals::create(H, W, depth, K, 5, diffThreshold, alg);
normalsComputer->cache();
}
struct NormalsCompareResult
{
double meanErr;
double maxErr;
};
static NormalsCompareResult checkNormals(Mat_<Vec4f> normals, Mat_<Vec4f> ground_normals)
{
double meanErr = 0, maxErr = 0;
for (int y = 0; y < normals.rows; ++y)
{
for (int x = 0; x < normals.cols; ++x)
{
Vec4f vec1 = normals(y, x), vec2 = ground_normals(y, x);
vec1 = vec1 / cv::norm(vec1);
vec2 = vec2 / cv::norm(vec2);
double dot = vec1.ddot(vec2);
// Just for rounding errors
double err = std::abs(dot) < 1.0 ? std::min(std::acos(dot), std::acos(-dot)) : 0.0;
meanErr += err;
maxErr = std::max(maxErr, err);
}
}
meanErr /= normals.rows * normals.cols;
return { meanErr, maxErr };
}
void runCase(bool scaleUp, int nPlanes, bool makeDepth,
double meanThreshold, double maxThreshold, double threshold3d)
{
std::vector<Plane> plane_params;
Mat_<unsigned char> plane_mask;
Mat points3d, ground_normals;
gen_points_3d(plane_params, plane_mask, points3d, ground_normals, nPlanes, scaleUp ? 5000.f : 1.f, rng);
Mat in;
if (makeDepth)
{
points3dToDepth16U(points3d, in);
}
else
{
in = points3d;
}
TickMeter tm;
tm.start();
Mat in_normals, normals3d;
//TODO: check other methods when 16U input is implemented for them
if (normalsComputer->getMethod() == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD && in.channels() == 3)
{
std::vector<Mat> channels;
split(in, channels);
normalsComputer->apply(channels[2], in_normals);
normalsComputer->apply(in, normals3d);
}
else
normalsComputer->apply(in, in_normals);
tm.stop();
CV_LOG_INFO(NULL, "Speed: " << tm.getTimeMilli() << " ms");
Mat_<Vec4f> normals;
in_normals.convertTo(normals, CV_32FC4);
NormalsCompareResult res = checkNormals(normals, ground_normals);
double err3d = 0.0;
if (!normals3d.empty())
{
Mat_<Vec4f> cvtNormals3d;
normals3d.convertTo(cvtNormals3d, CV_32FC4);
err3d = checkNormals(cvtNormals3d, ground_normals).maxErr;
}
EXPECT_LE(res.meanErr, meanThreshold);
EXPECT_LE(res.maxErr, maxThreshold);
EXPECT_LE(err3d, threshold3d);
}
NormalsTestParams p;
int depth;
RgbdNormals::RgbdNormalsMethod alg;
bool scale;
RNG rng;
Ptr<RgbdNormals> normalsComputer;
};
//TODO Test NaNs in data
TEST_P(NormalsRandomPlanes, check1plane)
{
double meanErr = std::get<3>(std::get<0>(p));
double maxErr = std::get<4>(std::get<0>(p));
// 1 plane, continuous scene, very low error..
runCase(scale, 1, false, meanErr, maxErr, threshold3d1d);
}
TEST_P(NormalsRandomPlanes, check3planes)
{
double meanErr = std::get<5>(std::get<0>(p));
double maxErr = hpi;
// 3 discontinuities, more error expected
runCase(scale, 3, false, meanErr, maxErr, threshold3d1d);
}
TEST_P(NormalsRandomPlanes, check1plane16u)
{
// TODO: check other algos as soon as they support 16U depth inputs
if (alg == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD && scale)
{
double meanErr = std::get<6>(std::get<0>(p));
double maxErr = hpi;
runCase(false, 1, true, meanErr, maxErr, threshold3d1d);
}
else
{
throw SkipTestException("Not implemented for anything except LINEMOD with scale");
}
}
TEST_P(NormalsRandomPlanes, check3planes16u)
{
// TODO: check other algos as soon as they support 16U depth inputs
if (alg == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD && scale)
{
double meanErr = std::get<7>(std::get<0>(p));
double maxErr = hpi;
runCase(false, 3, true, meanErr, maxErr, threshold3d1d);
}
else
{
throw SkipTestException("Not implemented for anything except LINEMOD with scale");
}
}
INSTANTIATE_TEST_CASE_P(RGBD_Normals, NormalsRandomPlanes,
::testing::Combine(::testing::Values(
// 3 normal computer params + 5 thresholds:
//depth, alg, scale, 1plane mean, 1plane max, 3planes mean, 1plane16u mean, 3planes16 mean
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, true, 0.00362, 0.08881, 0.02175, 0, 0},
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, false, 0.00374, 0.10309, 0.01902, 0, 0},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, true, 0.00023, 0.00037, 0.01805, 0, 0},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, false, 0.00023, 0.00037, 0.01805, 0, 0},
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, true, 0.00186, 0.08974, 0.04528, 0.21220, 0.17314},
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, false, 0.00157, 0.01225, 0.04528, 0, 0},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, true, 0.00160, 0.06526, 0.04371, 0.28837, 0.28918},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, false, 0.00154, 0.06877, 0.04323, 0, 0},
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, true, 0.01987, hpi, 0.03463, 0, 0},
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, false, 0.01962, hpi, 0.03546, 0, 0},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, true, 0.01958, hpi, 0.03546, 0, 0},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, false, 0.01995, hpi, 0.03474, 0, 0},
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, true, 0.000230, 0.00038, 0.00450, 0, 0},
NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, false, 0.000230, 0.00038, 0.00478, 0, 0},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, true, 0.000221, 0.00038, 0.00469, 0, 0},
NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, false, 0.000238, 0.00038, 0.00477, 0, 0}
), ::testing::Range(0, nTestCasesNormals)));
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
typedef std::tuple<NormalComputers, std::pair<double, double>> NormalComputerThresholds;
struct RenderedNormals: public ::testing::TestWithParam<std::tuple<MatDepth, NormalComputerThresholds, bool>>
{
static Mat readYaml(std::string fname)
{
Mat img;
FileStorage fs(fname, FileStorage::Mode::READ);
if (fs.isOpened() && fs.getFirstTopLevelNode().name() == "testImg")
{
fs["testImg"] >> img;
}
return img;
};
static Mat nanMask(Mat img)
{
int depth = img.depth();
Mat mask(img.size(), CV_8U);
for (int y = 0; y < img.rows; y++)
{
uchar* maskRow = mask.ptr<uchar>(y);
if (depth == CV_32F)
{
Vec3f *imgrow = img.ptr<Vec3f>(y);
for (int x = 0; x < img.cols; x++)
{
maskRow[x] = (imgrow[x] == imgrow[x])*255;
}
}
else if (depth == CV_64F)
{
Vec3d *imgrow = img.ptr<Vec3d>(y);
for (int x = 0; x < img.cols; x++)
{
maskRow[x] = (imgrow[x] == imgrow[x])*255;
}
}
}
return mask;
}
template<typename VT>
static Mat flipAxesT(Mat pts, int flip)
{
Mat flipped(pts.size(), pts.type());
for (int y = 0; y < pts.rows; y++)
{
VT *inrow = pts.ptr<VT>(y);
VT *outrow = flipped.ptr<VT>(y);
for (int x = 0; x < pts.cols; x++)
{
VT n = inrow[x];
n[0] = (flip & FLIP_X) ? -n[0] : n[0];
n[1] = (flip & FLIP_Y) ? -n[1] : n[1];
n[2] = (flip & FLIP_Z) ? -n[2] : n[2];
outrow[x] = n;
}
}
return flipped;
}
static const int FLIP_X = 1;
static const int FLIP_Y = 2;
static const int FLIP_Z = 4;
static Mat flipAxes(Mat pts, int flip)
{
int depth = pts.depth();
if (depth == CV_32F)
{
return flipAxesT<Vec3f>(pts, flip);
}
else if (depth == CV_64F)
{
return flipAxesT<Vec3d>(pts, flip);
}
else
{
return Mat();
}
}
template<typename VT>
static Mat_<typename VT::value_type> normalsErrorT(Mat_<VT> srcNormals, Mat_<VT> dstNormals)
{
typedef typename VT::value_type Val;
Mat out(srcNormals.size(), cv::traits::Depth<Val>::value, Scalar(0));
for (int y = 0; y < srcNormals.rows; y++)
{
VT *srcrow = srcNormals[y];
VT *dstrow = dstNormals[y];
Val *outrow = out.ptr<Val>(y);
for (int x = 0; x < srcNormals.cols; x++)
{
VT sn = srcrow[x];
VT dn = dstrow[x];
Val dot = sn.dot(dn);
Val v(0.0);
// Just for rounding errors
if (std::abs(dot) < 1)
v = std::min(std::acos(dot), std::acos(-dot));
outrow[x] = v;
}
}
return out;
}
static Mat normalsError(Mat srcNormals, Mat dstNormals)
{
int depth = srcNormals.depth();
int channels = srcNormals.channels();
if (depth == CV_32F)
{
if (channels == 3)
{
return normalsErrorT<Vec3f>(srcNormals, dstNormals);
}
else if (channels == 4)
{
return normalsErrorT<Vec4f>(srcNormals, dstNormals);
}
}
else if (depth == CV_64F)
{
if (channels == 3)
{
return normalsErrorT<Vec3d>(srcNormals, dstNormals);
}
else if (channels == 4)
{
return normalsErrorT<Vec4d>(srcNormals, dstNormals);
}
}
else
{
CV_Error(Error::StsInternal, "This type is unsupported");
}
return Mat();
}
};
TEST_P(RenderedNormals, check)
{
auto p = GetParam();
int depth = std::get<0>(p);
auto alg = static_cast<RgbdNormals::RgbdNormalsMethod>(int(std::get<0>(std::get<1>(p))));
bool scale = std::get<2>(p);
std::string dataPath = cvtest::TS::ptr()->get_data_path();
// The depth rendered from scene OPENCV_TEST_DATA_PATH + "/cv/rgbd/normals_check/normals_scene.blend"
std::string srcDepthFilename = dataPath + "/cv/rgbd/normals_check/depth.yaml.gz";
std::string srcNormalsFilename = dataPath + "/cv/rgbd/normals_check/normals%d.yaml.gz";
Mat srcDepth = readYaml(srcDepthFilename);
ASSERT_FALSE(srcDepth.empty()) << "Failed to load depth data";
Size depthSize = srcDepth.size();
Mat srcNormals;
std::array<Mat, 3> srcNormalsCh;
for (int i = 0; i < 3; i++)
{
Mat m = readYaml(cv::format(srcNormalsFilename.c_str(), i));
ASSERT_FALSE(m.empty()) << "Failed to load normals data";
if (depth == CV_64F)
{
Mat c;
m.convertTo(c, CV_64F);
m = c;
}
srcNormalsCh[i] = m;
}
cv::merge(srcNormalsCh, srcNormals);
// Convert saved normals from [0; 1] range to [-1; 1]
srcNormals = srcNormals * 2.0 - 1.0;
// Data obtained from Blender scene
Matx33f intr(666.6667f, 0.f, 320.f,
0.f, 666.6667f, 240.f,
0.f, 0.f, 1.f);
// Inverted camera rotation
Matx33d rotm = cv::Quatd(0.7805, 0.4835, 0.2087, 0.3369).conjugate().toRotMat3x3();
cv::transform(srcNormals, srcNormals, rotm);
Mat srcMask = srcDepth > 0;
float diffThreshold = 50.f;
if (scale)
{
srcDepth = srcDepth * 5000.0;
diffThreshold = 100000.f;
}
Mat srcCloud;
// The function with mask produces 1x(w*h) vector, this is not what we need
// depthTo3d(srcDepth, intr, srcCloud, srcMask);
depthTo3d(srcDepth, intr, srcCloud);
Scalar qnan = Scalar::all(std::numeric_limits<double>::quiet_NaN());
srcCloud.setTo(qnan, ~srcMask);
srcDepth.setTo(qnan, ~srcMask);
// For further result comparison
srcNormals.setTo(qnan, ~srcMask);
Ptr<RgbdNormals> normalsComputer = RgbdNormals::create(depthSize.height, depthSize.width, depth, intr, 5, diffThreshold, alg);
normalsComputer->cache();
Mat dstNormals, dstNormalsOrig, dstNormalsDepth;
normalsComputer->apply(srcCloud, dstNormals);
//TODO: add for other methods too when it's implemented
if (alg == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD)
{
normalsComputer->apply(srcDepth, dstNormalsDepth);
dstNormalsOrig = dstNormals.clone();
}
// Remove 4th channel from dstNormals
Mat newDstNormals;
std::vector<Mat> dstNormalsCh;
split(dstNormals, dstNormalsCh);
dstNormalsCh.resize(3);
merge(dstNormalsCh, newDstNormals);
dstNormals = newDstNormals;
Mat dstMask = nanMask(dstNormals);
// div by 8 because uchar is 8-bit
double maskl2 = cv::norm(dstMask, srcMask, NORM_HAMMING) / 8;
// Flipping Y and Z to correspond to srcNormals
Mat flipped = flipAxes(dstNormals, FLIP_Y | FLIP_Z);
dstNormals = flipped;
Mat absdot = normalsError(srcNormals, dstNormals);
Mat cmpMask = srcMask & dstMask;
EXPECT_GT(countNonZero(cmpMask), 0);
double nrml2 = cv::norm(absdot, NORM_L2, cmpMask);
if (!dstNormalsDepth.empty())
{
Mat abs3d = normalsError(dstNormalsOrig, dstNormalsDepth);
double errInf = cv::norm(abs3d, NORM_INF, cmpMask);
double errL2 = cv::norm(abs3d, NORM_L2, cmpMask);
EXPECT_LE(errInf, 0.00085);
EXPECT_LE(errL2, 0.07718);
}
auto th = std::get<1>(std::get<1>(p));
EXPECT_LE(nrml2, th.first);
EXPECT_LE(maskl2, th.second);
}
INSTANTIATE_TEST_CASE_P(RGBD_Normals, RenderedNormals, ::testing::Combine(::testing::Values(CV_32F, CV_64F),
::testing::Values(
NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_FALS, { 81.8213, 0}},
NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, { 107.2710, 29168}},
NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_SRI, { 73.2027, 17693}},
NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, { 57.9832, 2531}}),
::testing::Values(true, false)));
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class RgbdPlaneGenerate : public ::testing::TestWithParam<std::tuple<int, bool, int>>
{
protected:
void SetUp() override
{
auto p = GetParam();
idx = std::get<0>(p);
checkNormals = std::get<1>(p);
nPlanes = std::get<2>(p);
}
int idx;
bool checkNormals;
int nPlanes;
};
TEST_P(RgbdPlaneGenerate, compute)
{
RNG &rng = cvtest::TS::ptr()->get_rng();
rng.state += idx;
std::vector<Plane> planes;
Mat points3d, ground_normals;
Mat_<unsigned char> gt_plane_mask;
gen_points_3d(planes, gt_plane_mask, points3d, ground_normals, nPlanes, 1.f, rng);
Mat plane_mask;
std::vector<Vec4f> plane_coefficients;
Mat normals;
if (checkNormals)
{
// First, get the normals
int depth = CV_32F;
Ptr<RgbdNormals> normalsComputer = RgbdNormals::create(H, W, depth, K, 5, 50.f, RgbdNormals::RGBD_NORMALS_METHOD_FALS);
normalsComputer->apply(points3d, normals);
}
findPlanes(points3d, normals, plane_mask, plane_coefficients);
// Compare each found plane to each ground truth plane
int n_planes = (int)plane_coefficients.size();
int n_gt_planes = (int)planes.size();
Mat_<int> matching(n_gt_planes, n_planes);
for (int j = 0; j < n_gt_planes; ++j)
{
Mat gt_mask = gt_plane_mask == j;
int n_gt = countNonZero(gt_mask);
int n_max = 0, i_max = 0;
for (int i = 0; i < n_planes; ++i)
{
Mat dst;
bitwise_and(gt_mask, plane_mask == i, dst);
matching(j, i) = countNonZero(dst);
if (matching(j, i) > n_max)
{
n_max = matching(j, i);
i_max = i;
}
}
// Get the best match
ASSERT_LE(float(n_max - n_gt) / n_gt, 0.001);
// Compare the normals
Vec3d normal(plane_coefficients[i_max][0], plane_coefficients[i_max][1], plane_coefficients[i_max][2]);
Vec4d nd = planes[j].nd;
ASSERT_GE(std::abs(Vec3d(nd[0], nd[1], nd[2]).dot(normal)), 0.95);
}
}
// 1 plane, continuous scene, very low error
// 3 planes, 3 discontinuities, more error expected
INSTANTIATE_TEST_CASE_P(RGBD_Plane, RgbdPlaneGenerate, ::testing::Combine(::testing::Range(0, 10),
::testing::Values(false, true),
::testing::Values(1, 3)));
TEST(RGBD_Plane, regression2309ValgrindCheck)
{
Mat points(640, 480, CV_32FC3, Scalar::all(0));
// Note, 640%9 is 1 and 480%9 is 3
int blockSize = 9;
Mat mask;
std::vector<cv::Vec4f> planes;
// Will corrupt memory; valgrind gets triggered
findPlanes(points, noArray(), mask, planes, blockSize);
}
}} // namespace