mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 12:20:10 +08:00
359 lines
12 KiB
C++
359 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
/* POSIT structure */
|
|
struct CvPOSITObject
|
|
{
|
|
int N;
|
|
float* inv_matr;
|
|
float* obj_vecs;
|
|
float* img_vecs;
|
|
};
|
|
|
|
static void icvPseudoInverse3D( float *a, float *b, int n, int method );
|
|
|
|
static CvStatus icvCreatePOSITObject( CvPoint3D32f *points,
|
|
int numPoints,
|
|
CvPOSITObject **ppObject )
|
|
{
|
|
int i;
|
|
|
|
/* Compute size of required memory */
|
|
/* buffer for inverse matrix = N*3*float */
|
|
/* buffer for storing weakImagePoints = numPoints * 2 * float */
|
|
/* buffer for storing object vectors = N*3*float */
|
|
/* buffer for storing image vectors = N*2*float */
|
|
|
|
int N = numPoints - 1;
|
|
int inv_matr_size = N * 3 * sizeof( float );
|
|
int obj_vec_size = inv_matr_size;
|
|
int img_vec_size = N * 2 * sizeof( float );
|
|
CvPOSITObject *pObject;
|
|
|
|
/* check bad arguments */
|
|
if( points == NULL )
|
|
return CV_NULLPTR_ERR;
|
|
if( numPoints < 4 )
|
|
return CV_BADSIZE_ERR;
|
|
if( ppObject == NULL )
|
|
return CV_NULLPTR_ERR;
|
|
|
|
/* memory allocation */
|
|
pObject = (CvPOSITObject *) cvAlloc( sizeof( CvPOSITObject ) +
|
|
inv_matr_size + obj_vec_size + img_vec_size );
|
|
|
|
if( !pObject )
|
|
return CV_OUTOFMEM_ERR;
|
|
|
|
/* part the memory between all structures */
|
|
pObject->N = N;
|
|
pObject->inv_matr = (float *) ((char *) pObject + sizeof( CvPOSITObject ));
|
|
pObject->obj_vecs = (float *) ((char *) (pObject->inv_matr) + inv_matr_size);
|
|
pObject->img_vecs = (float *) ((char *) (pObject->obj_vecs) + obj_vec_size);
|
|
|
|
/****************************************************************************************\
|
|
* Construct object vectors from object points *
|
|
\****************************************************************************************/
|
|
for( i = 0; i < numPoints - 1; i++ )
|
|
{
|
|
pObject->obj_vecs[i] = points[i + 1].x - points[0].x;
|
|
pObject->obj_vecs[N + i] = points[i + 1].y - points[0].y;
|
|
pObject->obj_vecs[2 * N + i] = points[i + 1].z - points[0].z;
|
|
}
|
|
/****************************************************************************************\
|
|
* Compute pseudoinverse matrix *
|
|
\****************************************************************************************/
|
|
icvPseudoInverse3D( pObject->obj_vecs, pObject->inv_matr, N, 0 );
|
|
|
|
*ppObject = pObject;
|
|
return CV_NO_ERR;
|
|
}
|
|
|
|
|
|
static CvStatus icvPOSIT( CvPOSITObject *pObject, CvPoint2D32f *imagePoints,
|
|
float focalLength, CvTermCriteria criteria,
|
|
float* rotation, float* translation )
|
|
{
|
|
int i, j, k;
|
|
int count = 0, converged = 0;
|
|
float inorm, jnorm, invInorm, invJnorm, invScale, scale = 0, inv_Z = 0;
|
|
float diff = (float)criteria.epsilon;
|
|
float inv_focalLength = 1 / focalLength;
|
|
|
|
/* Check bad arguments */
|
|
if( imagePoints == NULL )
|
|
return CV_NULLPTR_ERR;
|
|
if( pObject == NULL )
|
|
return CV_NULLPTR_ERR;
|
|
if( focalLength <= 0 )
|
|
return CV_BADFACTOR_ERR;
|
|
if( !rotation )
|
|
return CV_NULLPTR_ERR;
|
|
if( !translation )
|
|
return CV_NULLPTR_ERR;
|
|
if( (criteria.type == 0) || (criteria.type > (CV_TERMCRIT_ITER | CV_TERMCRIT_EPS)))
|
|
return CV_BADFLAG_ERR;
|
|
if( (criteria.type & CV_TERMCRIT_EPS) && criteria.epsilon < 0 )
|
|
return CV_BADFACTOR_ERR;
|
|
if( (criteria.type & CV_TERMCRIT_ITER) && criteria.max_iter <= 0 )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
/* init variables */
|
|
int N = pObject->N;
|
|
float *objectVectors = pObject->obj_vecs;
|
|
float *invMatrix = pObject->inv_matr;
|
|
float *imgVectors = pObject->img_vecs;
|
|
|
|
while( !converged )
|
|
{
|
|
if( count == 0 )
|
|
{
|
|
/* subtract out origin to get image vectors */
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
imgVectors[i] = imagePoints[i + 1].x - imagePoints[0].x;
|
|
imgVectors[N + i] = imagePoints[i + 1].y - imagePoints[0].y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
diff = 0;
|
|
/* Compute new SOP (scaled orthograthic projection) image from pose */
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
/* objectVector * k */
|
|
float old;
|
|
float tmp = objectVectors[i] * rotation[6] /*[2][0]*/ +
|
|
objectVectors[N + i] * rotation[7] /*[2][1]*/ +
|
|
objectVectors[2 * N + i] * rotation[8] /*[2][2]*/;
|
|
|
|
tmp *= inv_Z;
|
|
tmp += 1;
|
|
|
|
old = imgVectors[i];
|
|
imgVectors[i] = imagePoints[i + 1].x * tmp - imagePoints[0].x;
|
|
|
|
diff = MAX( diff, (float) fabs( imgVectors[i] - old ));
|
|
|
|
old = imgVectors[N + i];
|
|
imgVectors[N + i] = imagePoints[i + 1].y * tmp - imagePoints[0].y;
|
|
|
|
diff = MAX( diff, (float) fabs( imgVectors[N + i] - old ));
|
|
}
|
|
}
|
|
|
|
/* calculate I and J vectors */
|
|
for( i = 0; i < 2; i++ )
|
|
{
|
|
for( j = 0; j < 3; j++ )
|
|
{
|
|
rotation[3*i+j] /*[i][j]*/ = 0;
|
|
for( k = 0; k < N; k++ )
|
|
{
|
|
rotation[3*i+j] /*[i][j]*/ += invMatrix[j * N + k] * imgVectors[i * N + k];
|
|
}
|
|
}
|
|
}
|
|
|
|
inorm = rotation[0] /*[0][0]*/ * rotation[0] /*[0][0]*/ +
|
|
rotation[1] /*[0][1]*/ * rotation[1] /*[0][1]*/ +
|
|
rotation[2] /*[0][2]*/ * rotation[2] /*[0][2]*/;
|
|
|
|
jnorm = rotation[3] /*[1][0]*/ * rotation[3] /*[1][0]*/ +
|
|
rotation[4] /*[1][1]*/ * rotation[4] /*[1][1]*/ +
|
|
rotation[5] /*[1][2]*/ * rotation[5] /*[1][2]*/;
|
|
|
|
invInorm = cvInvSqrt( inorm );
|
|
invJnorm = cvInvSqrt( jnorm );
|
|
|
|
inorm *= invInorm;
|
|
jnorm *= invJnorm;
|
|
|
|
rotation[0] /*[0][0]*/ *= invInorm;
|
|
rotation[1] /*[0][1]*/ *= invInorm;
|
|
rotation[2] /*[0][2]*/ *= invInorm;
|
|
|
|
rotation[3] /*[1][0]*/ *= invJnorm;
|
|
rotation[4] /*[1][1]*/ *= invJnorm;
|
|
rotation[5] /*[1][2]*/ *= invJnorm;
|
|
|
|
/* row2 = row0 x row1 (cross product) */
|
|
rotation[6] /*->m[2][0]*/ = rotation[1] /*->m[0][1]*/ * rotation[5] /*->m[1][2]*/ -
|
|
rotation[2] /*->m[0][2]*/ * rotation[4] /*->m[1][1]*/;
|
|
|
|
rotation[7] /*->m[2][1]*/ = rotation[2] /*->m[0][2]*/ * rotation[3] /*->m[1][0]*/ -
|
|
rotation[0] /*->m[0][0]*/ * rotation[5] /*->m[1][2]*/;
|
|
|
|
rotation[8] /*->m[2][2]*/ = rotation[0] /*->m[0][0]*/ * rotation[4] /*->m[1][1]*/ -
|
|
rotation[1] /*->m[0][1]*/ * rotation[3] /*->m[1][0]*/;
|
|
|
|
scale = (inorm + jnorm) / 2.0f;
|
|
inv_Z = scale * inv_focalLength;
|
|
|
|
count++;
|
|
converged = ((criteria.type & CV_TERMCRIT_EPS) && (diff < criteria.epsilon));
|
|
converged |= ((criteria.type & CV_TERMCRIT_ITER) && (count == criteria.max_iter));
|
|
}
|
|
invScale = 1 / scale;
|
|
translation[0] = imagePoints[0].x * invScale;
|
|
translation[1] = imagePoints[0].y * invScale;
|
|
translation[2] = 1 / inv_Z;
|
|
|
|
return CV_NO_ERR;
|
|
}
|
|
|
|
|
|
static CvStatus icvReleasePOSITObject( CvPOSITObject ** ppObject )
|
|
{
|
|
cvFree( ppObject );
|
|
return CV_NO_ERR;
|
|
}
|
|
|
|
/*F///////////////////////////////////////////////////////////////////////////////////////
|
|
// Name: icvPseudoInverse3D
|
|
// Purpose: Pseudoinverse N x 3 matrix N >= 3
|
|
// Context:
|
|
// Parameters:
|
|
// a - input matrix
|
|
// b - pseudoinversed a
|
|
// n - number of rows in a
|
|
// method - if 0, then b = inv(transpose(a)*a) * transpose(a)
|
|
// if 1, then SVD used.
|
|
// Returns:
|
|
// Notes: Both matrix are stored by n-dimensional vectors.
|
|
// Now only method == 0 supported.
|
|
//F*/
|
|
void
|
|
icvPseudoInverse3D( float *a, float *b, int n, int method )
|
|
{
|
|
int k;
|
|
|
|
if( method == 0 )
|
|
{
|
|
float ata00 = 0;
|
|
float ata11 = 0;
|
|
float ata22 = 0;
|
|
float ata01 = 0;
|
|
float ata02 = 0;
|
|
float ata12 = 0;
|
|
float det = 0;
|
|
|
|
/* compute matrix ata = transpose(a) * a */
|
|
for( k = 0; k < n; k++ )
|
|
{
|
|
float a0 = a[k];
|
|
float a1 = a[n + k];
|
|
float a2 = a[2 * n + k];
|
|
|
|
ata00 += a0 * a0;
|
|
ata11 += a1 * a1;
|
|
ata22 += a2 * a2;
|
|
|
|
ata01 += a0 * a1;
|
|
ata02 += a0 * a2;
|
|
ata12 += a1 * a2;
|
|
}
|
|
/* inverse matrix ata */
|
|
{
|
|
float inv_det;
|
|
float p00 = ata11 * ata22 - ata12 * ata12;
|
|
float p01 = -(ata01 * ata22 - ata12 * ata02);
|
|
float p02 = ata12 * ata01 - ata11 * ata02;
|
|
|
|
float p11 = ata00 * ata22 - ata02 * ata02;
|
|
float p12 = -(ata00 * ata12 - ata01 * ata02);
|
|
float p22 = ata00 * ata11 - ata01 * ata01;
|
|
|
|
det += ata00 * p00;
|
|
det += ata01 * p01;
|
|
det += ata02 * p02;
|
|
|
|
inv_det = 1 / det;
|
|
|
|
/* compute resultant matrix */
|
|
for( k = 0; k < n; k++ )
|
|
{
|
|
float a0 = a[k];
|
|
float a1 = a[n + k];
|
|
float a2 = a[2 * n + k];
|
|
|
|
b[k] = (p00 * a0 + p01 * a1 + p02 * a2) * inv_det;
|
|
b[n + k] = (p01 * a0 + p11 * a1 + p12 * a2) * inv_det;
|
|
b[2 * n + k] = (p02 * a0 + p12 * a1 + p22 * a2) * inv_det;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*if ( method == 1 )
|
|
{
|
|
}
|
|
*/
|
|
|
|
return;
|
|
}
|
|
|
|
CV_IMPL CvPOSITObject *
|
|
cvCreatePOSITObject( CvPoint3D32f * points, int numPoints )
|
|
{
|
|
CvPOSITObject *pObject = 0;
|
|
IPPI_CALL( icvCreatePOSITObject( points, numPoints, &pObject ));
|
|
return pObject;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvPOSIT( CvPOSITObject * pObject, CvPoint2D32f * imagePoints,
|
|
double focalLength, CvTermCriteria criteria,
|
|
float* rotation, float* translation )
|
|
{
|
|
IPPI_CALL( icvPOSIT( pObject, imagePoints,(float) focalLength, criteria,
|
|
rotation, translation ));
|
|
}
|
|
|
|
CV_IMPL void
|
|
cvReleasePOSITObject( CvPOSITObject ** ppObject )
|
|
{
|
|
IPPI_CALL( icvReleasePOSITObject( ppObject ));
|
|
}
|
|
|
|
/* End of file. */
|