mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 23:19:23 +08:00
5ff1fababc
ml: refactored tests * use parametrized tests where appropriate * use stable theRNG in most tests * use modern style with EXPECT_/ASSERT_ checks
108 lines
3.6 KiB
C++
108 lines
3.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
void randomFillCategories(const string & filename, Mat & input)
|
|
{
|
|
Mat catMap;
|
|
Mat catCount;
|
|
std::vector<uchar> varTypes;
|
|
|
|
FileStorage fs(filename, FileStorage::READ);
|
|
FileNode root = fs.getFirstTopLevelNode();
|
|
root["cat_map"] >> catMap;
|
|
root["cat_count"] >> catCount;
|
|
root["var_type"] >> varTypes;
|
|
|
|
int offset = 0;
|
|
int countOffset = 0;
|
|
uint var = 0, varCount = (uint)varTypes.size();
|
|
for (; var < varCount; ++var)
|
|
{
|
|
if (varTypes[var] == ml::VAR_CATEGORICAL)
|
|
{
|
|
int size = catCount.at<int>(0, countOffset);
|
|
for (int row = 0; row < input.rows; ++row)
|
|
{
|
|
int randomChosenIndex = offset + ((uint)cv::theRNG()) % size;
|
|
int value = catMap.at<int>(0, randomChosenIndex);
|
|
input.at<float>(row, var) = (float)value;
|
|
}
|
|
offset += size;
|
|
++countOffset;
|
|
}
|
|
}
|
|
}
|
|
|
|
//==================================================================================================
|
|
|
|
typedef tuple<string, string> ML_Legacy_Param;
|
|
typedef testing::TestWithParam< ML_Legacy_Param > ML_Legacy_Params;
|
|
|
|
TEST_P(ML_Legacy_Params, legacy_load)
|
|
{
|
|
const string modelName = get<0>(GetParam());
|
|
const string dataName = get<1>(GetParam());
|
|
const string filename = findDataFile("legacy/" + modelName + "_" + dataName + ".xml");
|
|
const bool isTree = modelName == CV_BOOST || modelName == CV_DTREE || modelName == CV_RTREES;
|
|
|
|
Ptr<StatModel> model;
|
|
if (modelName == CV_BOOST)
|
|
model = Algorithm::load<Boost>(filename);
|
|
else if (modelName == CV_ANN)
|
|
model = Algorithm::load<ANN_MLP>(filename);
|
|
else if (modelName == CV_DTREE)
|
|
model = Algorithm::load<DTrees>(filename);
|
|
else if (modelName == CV_NBAYES)
|
|
model = Algorithm::load<NormalBayesClassifier>(filename);
|
|
else if (modelName == CV_SVM)
|
|
model = Algorithm::load<SVM>(filename);
|
|
else if (modelName == CV_RTREES)
|
|
model = Algorithm::load<RTrees>(filename);
|
|
else if (modelName == CV_SVMSGD)
|
|
model = Algorithm::load<SVMSGD>(filename);
|
|
ASSERT_TRUE(model);
|
|
|
|
Mat input = Mat(isTree ? 10 : 1, model->getVarCount(), CV_32F);
|
|
cv::theRNG().fill(input, RNG::UNIFORM, 0, 40);
|
|
|
|
if (isTree)
|
|
randomFillCategories(filename, input);
|
|
|
|
Mat output;
|
|
EXPECT_NO_THROW(model->predict(input, output, StatModel::RAW_OUTPUT | (isTree ? DTrees::PREDICT_SUM : 0)));
|
|
// just check if no internal assertions or errors thrown
|
|
}
|
|
|
|
ML_Legacy_Param param_list[] = {
|
|
ML_Legacy_Param(CV_ANN, "waveform"),
|
|
ML_Legacy_Param(CV_BOOST, "adult"),
|
|
ML_Legacy_Param(CV_BOOST, "1"),
|
|
ML_Legacy_Param(CV_BOOST, "2"),
|
|
ML_Legacy_Param(CV_BOOST, "3"),
|
|
ML_Legacy_Param(CV_DTREE, "abalone"),
|
|
ML_Legacy_Param(CV_DTREE, "mushroom"),
|
|
ML_Legacy_Param(CV_NBAYES, "waveform"),
|
|
ML_Legacy_Param(CV_SVM, "poletelecomm"),
|
|
ML_Legacy_Param(CV_SVM, "waveform"),
|
|
ML_Legacy_Param(CV_RTREES, "waveform"),
|
|
ML_Legacy_Param(CV_SVMSGD, "waveform"),
|
|
};
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, ML_Legacy_Params, testing::ValuesIn(param_list));
|
|
|
|
/*TEST(ML_SVM, throw_exception_when_save_untrained_model)
|
|
{
|
|
Ptr<cv::ml::SVM> svm;
|
|
string filename = tempfile("svm.xml");
|
|
ASSERT_THROW(svm.save(filename.c_str()), Exception);
|
|
remove(filename.c_str());
|
|
}*/
|
|
|
|
}} // namespace
|