opencv/modules/dnn/test/test_onnx_importer.cpp
2019-07-16 07:53:50 +00:00

661 lines
20 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "test_precomp.hpp"
#include "npy_blob.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace opencv_test { namespace {
template<typename TString>
static std::string _tf(TString filename, bool required = true)
{
return findDataFile(std::string("dnn/onnx/") + filename, required);
}
class Test_ONNX_layers : public DNNTestLayer
{
public:
bool required;
Test_ONNX_layers() : required(true) { }
enum Extension
{
npy,
pb
};
void testONNXModels(const String& basename, const Extension ext = npy,
const double l1 = 0, const float lInf = 0, const bool useSoftmax = false,
bool checkNoFallbacks = true)
{
String onnxmodel = _tf("models/" + basename + ".onnx", required);
Mat inp, ref;
if (ext == npy) {
inp = blobFromNPY(_tf("data/input_" + basename + ".npy"));
ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
}
else if (ext == pb) {
inp = readTensorFromONNX(_tf("data/input_" + basename + ".pb"));
ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb"));
}
else
CV_Error(Error::StsUnsupportedFormat, "Unsupported extension");
checkBackend(&inp, &ref);
Net net = readNetFromONNX(onnxmodel);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(inp);
Mat out = net.forward("");
if (useSoftmax)
{
LayerParams lp;
Net netSoftmax;
netSoftmax.addLayerToPrev("softmaxLayer", "SoftMax", lp);
netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV);
netSoftmax.setInput(out);
out = netSoftmax.forward();
netSoftmax.setInput(ref);
ref = netSoftmax.forward();
}
normAssert(ref, out, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
if (checkNoFallbacks)
expectNoFallbacksFromIE(net);
}
};
TEST_P(Test_ONNX_layers, InstanceNorm)
{
if (target == DNN_TARGET_MYRIAD)
testONNXModels("instancenorm", npy, 0, 0, false, false);
else
testONNXModels("instancenorm", npy);
}
TEST_P(Test_ONNX_layers, MaxPooling)
{
testONNXModels("maxpooling");
testONNXModels("two_maxpooling");
}
TEST_P(Test_ONNX_layers, Convolution)
{
testONNXModels("convolution");
}
TEST_P(Test_ONNX_layers, Convolution3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw SkipTestException("Test is enabled starts from 2019R1");
#endif
if (target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported");
testONNXModels("conv3d");
testONNXModels("conv3d_bias");
}
TEST_P(Test_ONNX_layers, Two_convolution)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
// Reference output values are in range [-0.855, 0.611]
testONNXModels("two_convolution");
}
TEST_P(Test_ONNX_layers, Deconvolution)
{
testONNXModels("deconvolution", npy, 0, 0, false, false);
testONNXModels("two_deconvolution", npy, 0, 0, false, false);
testONNXModels("deconvolution_group", npy, 0, 0, false, false);
testONNXModels("deconvolution_output_shape", npy, 0, 0, false, false);
testONNXModels("deconv_adjpad_2d", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, Deconvolution3D)
{
#if defined(INF_ENGINE_RELEASE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_2018R5);
#endif
if (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_CPU)
throw SkipTestException("Only DLIE backend on CPU is supported");
testONNXModels("deconv3d");
testONNXModels("deconv3d_bias");
testONNXModels("deconv3d_pad");
testONNXModels("deconv3d_adjpad");
}
TEST_P(Test_ONNX_layers, Dropout)
{
testONNXModels("dropout");
}
TEST_P(Test_ONNX_layers, Linear)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
testONNXModels("linear");
}
TEST_P(Test_ONNX_layers, ReLU)
{
testONNXModels("ReLU");
}
TEST_P(Test_ONNX_layers, Clip)
{
testONNXModels("clip", npy);
}
TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid)
{
testONNXModels("maxpooling_sigmoid");
}
TEST_P(Test_ONNX_layers, Concatenation)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
}
testONNXModels("concatenation");
}
TEST_P(Test_ONNX_layers, Eltwise3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw SkipTestException("Test is enabled starts from 2019R1");
#endif
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU on DLIE backend is supported");
testONNXModels("eltwise3d");
}
TEST_P(Test_ONNX_layers, AveragePooling)
{
testONNXModels("average_pooling");
}
TEST_P(Test_ONNX_layers, MaxPooling3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw SkipTestException("Test is enabled starts from 2019R1");
#endif
if (target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported");
testONNXModels("max_pool3d");
}
TEST_P(Test_ONNX_layers, AvePooling3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw SkipTestException("Test is enabled starts from 2019R1");
#endif
if (target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported");
testONNXModels("ave_pool3d");
}
TEST_P(Test_ONNX_layers, PoolConv3D)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw SkipTestException("Test is enabled starts from 2019R1");
#endif
if (target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported");
testONNXModels("pool_conv_3d");
}
TEST_P(Test_ONNX_layers, BatchNormalization)
{
testONNXModels("batch_norm");
}
TEST_P(Test_ONNX_layers, BatchNormalization3D)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
}
testONNXModels("batch_norm_3d");
}
TEST_P(Test_ONNX_layers, Transpose)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
}
testONNXModels("transpose");
}
TEST_P(Test_ONNX_layers, Multiplication)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
testONNXModels("mul");
}
TEST_P(Test_ONNX_layers, Constant)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5);
#endif
testONNXModels("constant");
}
TEST_P(Test_ONNX_layers, Padding)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
testONNXModels("padding", npy, 0, 0, false, false);
#else
testONNXModels("padding");
#endif
}
TEST_P(Test_ONNX_layers, Resize)
{
testONNXModels("resize_nearest");
}
TEST_P(Test_ONNX_layers, MultyInputs)
{
const String model = _tf("models/multy_inputs.onnx");
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat inp1 = blobFromNPY(_tf("data/input_multy_inputs_0.npy"));
Mat inp2 = blobFromNPY(_tf("data/input_multy_inputs_1.npy"));
Mat ref = blobFromNPY(_tf("data/output_multy_inputs.npy"));
checkBackend(&inp1, &ref);
net.setInput(inp1, "0");
net.setInput(inp2, "1");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_layers, DynamicReshape)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
}
testONNXModels("dynamic_reshape");
}
TEST_P(Test_ONNX_layers, Reshape)
{
testONNXModels("unsqueeze");
}
TEST_P(Test_ONNX_layers, Slice)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
testONNXModels("slice", npy, 0, 0, false, false);
#else
testONNXModels("slice");
#endif
}
TEST_P(Test_ONNX_layers, Softmax)
{
testONNXModels("softmax");
testONNXModels("log_softmax", npy, 0, 0, false, false);
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
class Test_ONNX_nets : public Test_ONNX_layers
{
public:
Test_ONNX_nets() { required = false; }
};
TEST_P(Test_ONNX_nets, Alexnet)
{
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
const String model = _tf("models/alexnet.onnx", false);
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat inp = imread(_tf("../grace_hopper_227.png"));
Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy"));
checkBackend(&inp, &ref);
net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false));
ASSERT_FALSE(net.empty());
Mat out = net.forward();
normAssert(out, ref, "", default_l1, default_lInf);
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_nets, Squeezenet)
{
testONNXModels("squeezenet", pb);
}
TEST_P(Test_ONNX_nets, Googlenet)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
const String model = _tf("models/googlenet.onnx", false);
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
std::vector<Mat> images;
images.push_back( imread(_tf("../googlenet_0.png")) );
images.push_back( imread(_tf("../googlenet_1.png")) );
Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false);
Mat ref = blobFromNPY(_tf("../googlenet_prob.npy"));
checkBackend(&inp, &ref);
net.setInput(inp);
ASSERT_FALSE(net.empty());
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_nets, CaffeNet)
{
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
testONNXModels("caffenet", pb);
}
TEST_P(Test_ONNX_nets, RCNN_ILSVRC13)
{
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
// Reference output values are in range [-4.992, -1.161]
testONNXModels("rcnn_ilsvrc13", pb, 0.0045);
}
TEST_P(Test_ONNX_nets, VGG16)
{
applyTestTag(CV_TEST_TAG_MEMORY_6GB); // > 2.3Gb
// output range: [-69; 72], after Softmax [0; 0.96]
testONNXModels("vgg16", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, VGG16_bn)
{
applyTestTag(CV_TEST_TAG_MEMORY_6GB); // > 2.3Gb
// output range: [-16; 27], after Softmax [0; 0.67]
const double lInf = (target == DNN_TARGET_MYRIAD) ? 0.038 : default_lInf;
testONNXModels("vgg16-bn", pb, default_l1, lInf, true);
}
TEST_P(Test_ONNX_nets, ZFNet)
{
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
testONNXModels("zfnet512", pb);
}
TEST_P(Test_ONNX_nets, ResNet18v1)
{
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
// output range: [-16; 22], after Softmax [0, 0.51]
testONNXModels("resnet18v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
}
TEST_P(Test_ONNX_nets, ResNet50v1)
{
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
// output range: [-67; 75], after Softmax [0, 0.98]
testONNXModels("resnet50v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
}
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC)
{
applyTestTag(CV_TEST_TAG_VERYLONG);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1);
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
#endif
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL)
{
if (backend == DNN_BACKEND_OPENCV)
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_OPENCL : CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
throw SkipTestException("Test is disabled for OpenCL targets");
}
testONNXModels("resnet101_duc_hdc", pb);
}
TEST_P(Test_ONNX_nets, TinyYolov2)
{
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
if (cvtest::skipUnstableTests)
throw SkipTestException("Skip unstable test");
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE
&& (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
)
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
// output range: [-11; 8]
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.017 : default_l1;
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.14 : default_lInf;
testONNXModels("tiny_yolo2", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, CNN_MNIST)
{
// output range: [-1952; 6574], after Softmax [0; 1]
testONNXModels("cnn_mnist", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, MobileNet_v2)
{
// output range: [-166; 317], after Softmax [0; 1]
testONNXModels("mobilenetv2", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, LResNet100E_IR)
{
applyTestTag(
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
CV_TEST_TAG_DEBUG_LONG
);
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
}
double l1 = default_l1;
double lInf = default_lInf;
// output range: [-3; 3]
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) {
l1 = 0.009;
lInf = 0.035;
}
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_CPU) {
l1 = 4.6e-5;
lInf = 1.9e-4;
}
testONNXModels("LResNet100E_IR", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, Emotion_ferplus)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
double l1 = default_l1;
double lInf = default_lInf;
// Output values are in range [-2.011, 2.111]
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
l1 = 0.007;
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
{
l1 = 0.021;
lInf = 0.034;
}
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL)) {
l1 = 2.4e-4;
lInf = 6e-4;
}
testONNXModels("emotion_ferplus", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, Inception_v2)
{
testONNXModels("inception_v2", pb, default_l1, default_lInf, true);
}
TEST_P(Test_ONNX_nets, DenseNet121)
{
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
// output range: [-87; 138], after Softmax [0; 1]
testONNXModels("densenet121", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
}
TEST_P(Test_ONNX_nets, Inception_v1)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
#endif
testONNXModels("inception_v1", pb);
}
TEST_P(Test_ONNX_nets, Shufflenet)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
}
testONNXModels("shufflenet", pb);
}
TEST_P(Test_ONNX_nets, Resnet34_kinetics)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw SkipTestException("Test is enabled starts from 2019R1");
#endif
if (target != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported");
String onnxmodel = findDataFile("dnn/resnet-34_kinetics.onnx", false);
Mat image0 = imread(findDataFile("dnn/dog416.png"));
Mat image1 = imread(findDataFile("dnn/street.png"));
Mat ref0 = blobFromNPY(_tf("data/output_kinetics0.npy"));
Mat ref1 = blobFromNPY(_tf("data/output_kinetics1.npy"));
std::vector<Mat> images_0(16, image0);
std::vector<Mat> images_1(16, image1);
Mat blob0 = blobFromImages(images_0, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true);
Mat blob1 = blobFromImages(images_1, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true);
Net permute;
LayerParams lp;
int order[] = {1, 0, 2, 3};
lp.set("order", DictValue::arrayInt<int*>(&order[0], 4));
permute.addLayerToPrev("perm", "Permute", lp);
permute.setInput(blob0);
Mat input0 = permute.forward().clone();
permute.setInput(blob1);
Mat input1 = permute.forward().clone();
int dims[] = {1, 3, 16, 112, 112};
input0 = input0.reshape(0, 5, &dims[0]);
input1 = input1.reshape(0, 5, &dims[0]);
Net net = readNetFromONNX(onnxmodel);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
// output range [-5, 11]
float l1 = 0.0013;
float lInf = 0.009;
checkBackend(&input0, &ref0);
net.setInput(input0);
Mat out = net.forward().clone();
normAssert(ref0, out, "", l1, lInf);
checkBackend(&input1, &ref1);
net.setInput(input1);
out = net.forward().clone();
normAssert(ref1, out, "", l1, lInf);
expectNoFallbacksFromIE(net);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets());
}} // namespace