Open Source Computer Vision Library
Go to file
Abduragim Shtanchaev a8d1373919
Merge pull request #25794 from Abdurrahheem:ash/yolov10-support
Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794

This PR adds sample support of  [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186). 

**Running YOLOv10 using OpenCV.** 
1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10.  Particularty follow this proceduce. 

```bash
git clone git@github.com:Abdurrahheem/yolov10.git
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
python export_opencv.py --model=<model-name> --imgsz=<input-img-size>
```
By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV

2. For inference part on OpenCV.  one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model. 

``` bash
build opencv from source 
cd build 
./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114
```
If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform. 
For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443) 


**Running YOLOv9 using OpenCV**

1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting.

```bash
git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
conda create -n yolov9 python=3.9
conda activate yolov9
pip install -r requirements.txt
wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt
python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640) 
```

This will generate <yolov9-t-converted.onnx> file.

2.  Inference on OpenCV.

```bash
build opencv from source 
cd build 
./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image>
```

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-07-02 18:26:34 +03:00
.github Force contributors to define Apache 2.0 license for the new PRs. 2024-06-28 16:54:14 +03:00
3rdparty Fix: compilation Issue on ARM64 (msys2 clangarm) 2024-06-30 18:58:56 +00:00
apps Merge pull request #25582 from fengyuentau:dnn/dump_pbtxt 2024-05-17 11:07:05 +03:00
cmake Merge pull request #25661 from itlab-vision:framebuffer 2024-06-26 15:31:19 +03:00
data Merge pull request #22727 from su77ungr:patch-1 2022-11-17 06:54:25 +00:00
doc Merge pull request #25794 from Abdurrahheem:ash/yolov10-support 2024-07-02 18:26:34 +03:00
include exclude opencv_contrib modules 2020-02-26 15:12:45 +03:00
modules Merge pull request #25794 from Abdurrahheem:ash/yolov10-support 2024-07-02 18:26:34 +03:00
platforms Merge pull request #25746 from savuor:rv/hwasan_flag_release 2024-06-18 18:15:41 +03:00
samples Merge pull request #25794 from Abdurrahheem:ash/yolov10-support 2024-07-02 18:26:34 +03:00
.editorconfig add .editorconfig 2018-10-11 17:57:51 +00:00
.gitattributes cmake: generate and install ffmpeg-download.ps1 2018-06-09 13:19:48 +03:00
.gitignore Merge pull request #17165 from komakai:objc-binding 2020-06-08 18:32:53 +00:00
CMakeLists.txt Merge pull request #25793 from MaximMilashchenko:hal_rvv 2024-06-28 09:00:16 +03:00
CONTRIBUTING.md migration: github.com/opencv/opencv 2016-07-12 12:51:12 +03:00
COPYRIGHT copyright: 2023 (update) 2023-01-09 09:49:22 +00:00
LICENSE Merge pull request #18073 from vpisarev:apache2_license 2020-08-17 11:49:11 +00:00
README.md Space mistake in README.md 2024-03-03 23:37:07 +05:30
SECURITY.md Updated PGP key for security reports 2023-04-19 19:16:55 +03:00

OpenCV: Open Source Computer Vision Library

Resources

Contributing

Please read the contribution guidelines before starting work on a pull request.

Summary of the guidelines:

  • One pull request per issue;
  • Choose the right base branch;
  • Include tests and documentation;
  • Clean up "oops" commits before submitting;
  • Follow the coding style guide.

Additional Resources