mirror of
https://github.com/opencv/opencv.git
synced 2024-12-22 14:47:59 +08:00
139 lines
3.9 KiB
C++
139 lines
3.9 KiB
C++
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <cstdlib>
|
|
using namespace std;
|
|
|
|
static const string fcnType = "fcn8s";
|
|
|
|
static vector<cv::Vec3b> readColors(const string &filename = "pascal-classes.txt")
|
|
{
|
|
vector<cv::Vec3b> colors;
|
|
|
|
ifstream fp(filename.c_str());
|
|
if (!fp.is_open())
|
|
{
|
|
cerr << "File with colors not found: " << filename << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
string line;
|
|
while (!fp.eof())
|
|
{
|
|
getline(fp, line);
|
|
if (line.length())
|
|
{
|
|
stringstream ss(line);
|
|
|
|
string name; ss >> name;
|
|
int temp;
|
|
cv::Vec3b color;
|
|
ss >> temp; color[0] = (uchar)temp;
|
|
ss >> temp; color[1] = (uchar)temp;
|
|
ss >> temp; color[2] = (uchar)temp;
|
|
colors.push_back(color);
|
|
}
|
|
}
|
|
|
|
fp.close();
|
|
return colors;
|
|
}
|
|
|
|
static void colorizeSegmentation(const Mat &score, const vector<cv::Vec3b> &colors, cv::Mat &segm)
|
|
{
|
|
const int rows = score.size[2];
|
|
const int cols = score.size[3];
|
|
const int chns = score.size[1];
|
|
|
|
cv::Mat maxCl(rows, cols, CV_8UC1);
|
|
cv::Mat maxVal(rows, cols, CV_32FC1);
|
|
for (int ch = 0; ch < chns; ch++)
|
|
{
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const float *ptrScore = score.ptr<float>(0, ch, row);
|
|
uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
|
float *ptrMaxVal = maxVal.ptr<float>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
if (ptrScore[col] > ptrMaxVal[col])
|
|
{
|
|
ptrMaxVal[col] = ptrScore[col];
|
|
ptrMaxCl[col] = (uchar)ch;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
segm.create(rows, cols, CV_8UC3);
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
|
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
ptrSegm[col] = colors[ptrMaxCl[col]];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
String modelTxt = fcnType + "-heavy-pascal.prototxt";
|
|
String modelBin = fcnType + "-heavy-pascal.caffemodel";
|
|
String imageFile = (argc > 1) ? argv[1] : "rgb.jpg";
|
|
|
|
vector<cv::Vec3b> colors = readColors();
|
|
|
|
//! [Initialize network]
|
|
dnn::Net net = readNetFromCaffe(modelTxt, modelBin);
|
|
//! [Initialize network]
|
|
|
|
if (net.empty())
|
|
{
|
|
cerr << "Can't load network by using the following files: " << endl;
|
|
cerr << "prototxt: " << modelTxt << endl;
|
|
cerr << "caffemodel: " << modelBin << endl;
|
|
cerr << fcnType << "-heavy-pascal.caffemodel can be downloaded here:" << endl;
|
|
cerr << "http://dl.caffe.berkeleyvision.org/" << fcnType << "-heavy-pascal.caffemodel" << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
//! [Prepare blob]
|
|
Mat img = imread(imageFile);
|
|
if (img.empty())
|
|
{
|
|
cerr << "Can't read image from the file: " << imageFile << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
resize(img, img, Size(500, 500)); //FCN accepts 500x500 BGR-images
|
|
Mat inputBlob = blobFromImage(img, 1, Size(), Scalar(), false); //Convert Mat to batch of images
|
|
//! [Prepare blob]
|
|
|
|
//! [Set input blob]
|
|
net.setInput(inputBlob, "data"); //set the network input
|
|
//! [Set input blob]
|
|
|
|
//! [Make forward pass]
|
|
double t = (double)cv::getTickCount();
|
|
Mat score = net.forward("score"); //compute output
|
|
t = (double)cv::getTickCount() - t;
|
|
printf("processing time: %.1fms\n", t*1000./getTickFrequency());
|
|
//! [Make forward pass]
|
|
|
|
Mat colorize;
|
|
colorizeSegmentation(score, colors, colorize);
|
|
Mat show;
|
|
addWeighted(img, 0.4, colorize, 0.6, 0.0, show);
|
|
imshow("show", show);
|
|
waitKey(0);
|
|
return 0;
|
|
} //main
|