mirror of
https://github.com/opencv/opencv.git
synced 2024-12-22 14:47:59 +08:00
210 lines
6.1 KiB
C++
210 lines
6.1 KiB
C++
/*
|
|
Sample of using OpenCV dnn module with Torch ENet model.
|
|
*/
|
|
|
|
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <cstdlib>
|
|
#include <sstream>
|
|
using namespace std;
|
|
|
|
const String keys =
|
|
"{help h || Sample app for loading ENet Torch model. "
|
|
"The model and class names list can be downloaded here: "
|
|
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }"
|
|
"{model m || path to Torch .net model file (model_best.net) }"
|
|
"{image i || path to image file }"
|
|
"{c_names c || path to file with classnames for channels (optional, categories.txt) }"
|
|
"{result r || path to save output blob (optional, binary format, NCHW order) }"
|
|
"{show s || whether to show all output channels or not}"
|
|
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
|
|
;
|
|
|
|
static void colorizeSegmentation(const Mat &score, Mat &segm,
|
|
Mat &legend, vector<String> &classNames, vector<Vec3b> &colors);
|
|
static vector<Vec3b> readColors(const String &filename, vector<String>& classNames);
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
String modelFile = parser.get<String>("model");
|
|
String imageFile = parser.get<String>("image");
|
|
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 0;
|
|
}
|
|
|
|
String classNamesFile = parser.get<String>("c_names");
|
|
String resultFile = parser.get<String>("result");
|
|
|
|
//! [Read model and initialize network]
|
|
dnn::Net net = dnn::readNetFromTorch(modelFile);
|
|
|
|
//! [Prepare blob]
|
|
Mat img = imread(imageFile), input;
|
|
if (img.empty())
|
|
{
|
|
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
|
|
exit(-1);
|
|
}
|
|
|
|
Size origSize = img.size();
|
|
Size inputImgSize = cv::Size(1024, 512);
|
|
|
|
if (inputImgSize != origSize)
|
|
resize(img, img, inputImgSize); //Resize image to input size
|
|
|
|
Mat inputBlob = blobFromImage(img, 1./255); //Convert Mat to image batch
|
|
//! [Prepare blob]
|
|
|
|
//! [Set input blob]
|
|
net.setInput(inputBlob, ""); //set the network input
|
|
//! [Set input blob]
|
|
|
|
TickMeter tm;
|
|
|
|
String oBlob = net.getLayerNames().back();
|
|
if (!parser.get<String>("o_blob").empty())
|
|
{
|
|
oBlob = parser.get<String>("o_blob");
|
|
}
|
|
|
|
//! [Make forward pass]
|
|
tm.start();
|
|
Mat result = net.forward(oBlob);
|
|
tm.stop();
|
|
|
|
if (!resultFile.empty()) {
|
|
CV_Assert(result.isContinuous());
|
|
|
|
ofstream fout(resultFile.c_str(), ios::out | ios::binary);
|
|
fout.write((char*)result.data, result.total() * sizeof(float));
|
|
fout.close();
|
|
}
|
|
|
|
std::cout << "Output blob: " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << "\n";
|
|
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl;
|
|
|
|
if (parser.has("show"))
|
|
{
|
|
std::vector<String> classNames;
|
|
vector<cv::Vec3b> colors;
|
|
if(!classNamesFile.empty()) {
|
|
colors = readColors(classNamesFile, classNames);
|
|
}
|
|
Mat segm, legend;
|
|
colorizeSegmentation(result, segm, legend, classNames, colors);
|
|
|
|
Mat show;
|
|
addWeighted(img, 0.1, segm, 0.9, 0.0, show);
|
|
|
|
cv::resize(show, show, origSize, 0, 0, cv::INTER_NEAREST);
|
|
imshow("Result", show);
|
|
if(classNames.size())
|
|
imshow("Legend", legend);
|
|
waitKey();
|
|
}
|
|
|
|
return 0;
|
|
} //main
|
|
|
|
static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vector<String> &classNames, vector<Vec3b> &colors)
|
|
{
|
|
const int rows = score.size[2];
|
|
const int cols = score.size[3];
|
|
const int chns = score.size[1];
|
|
|
|
cv::Mat maxCl(rows, cols, CV_8UC1);
|
|
cv::Mat maxVal(rows, cols, CV_32FC1);
|
|
for (int ch = 0; ch < chns; ch++)
|
|
{
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const float *ptrScore = score.ptr<float>(0, ch, row);
|
|
uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
|
float *ptrMaxVal = maxVal.ptr<float>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
if (ptrScore[col] > ptrMaxVal[col])
|
|
{
|
|
ptrMaxVal[col] = ptrScore[col];
|
|
ptrMaxCl[col] = (uchar)ch;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
segm.create(rows, cols, CV_8UC3);
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
|
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
ptrSegm[col] = colors[ptrMaxCl[col]];
|
|
}
|
|
}
|
|
|
|
if (classNames.size() == colors.size())
|
|
{
|
|
int blockHeight = 30;
|
|
legend.create(blockHeight*(int)classNames.size(), 200, CV_8UC3);
|
|
for(int i = 0; i < (int)classNames.size(); i++)
|
|
{
|
|
cv::Mat block = legend.rowRange(i*blockHeight, (i+1)*blockHeight);
|
|
block = colors[i];
|
|
putText(block, classNames[i], Point(0, blockHeight/2), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
|
|
}
|
|
}
|
|
}
|
|
|
|
static vector<Vec3b> readColors(const String &filename, vector<String>& classNames)
|
|
{
|
|
vector<cv::Vec3b> colors;
|
|
classNames.clear();
|
|
|
|
ifstream fp(filename.c_str());
|
|
if (!fp.is_open())
|
|
{
|
|
cerr << "File with colors not found: " << filename << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
string line;
|
|
while (!fp.eof())
|
|
{
|
|
getline(fp, line);
|
|
if (line.length())
|
|
{
|
|
stringstream ss(line);
|
|
|
|
string name; ss >> name;
|
|
int temp;
|
|
cv::Vec3b color;
|
|
ss >> temp; color[0] = (uchar)temp;
|
|
ss >> temp; color[1] = (uchar)temp;
|
|
ss >> temp; color[2] = (uchar)temp;
|
|
classNames.push_back(name);
|
|
colors.push_back(color);
|
|
}
|
|
}
|
|
|
|
fp.close();
|
|
return colors;
|
|
}
|