mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
6f3163f62d
Added the defaultNorm() method to the DescriptorExtractor class. This method returns the default norm type for each descriptor type. The tests and C/C++ samples were updated to get the norm type directly from the DescriptorExtractor inherited classes. This was reported in feature report #2182 (http://code.opencv.org/issues/2182). It will make it possible to get the norm type usually applied matching method for each descriptor, instead of passing it manually.
75 lines
2.1 KiB
C++
75 lines
2.1 KiB
C++
/*
|
|
* shape_context.cpp -- Shape context demo for shape matching
|
|
*/
|
|
|
|
#include "opencv2/shape.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "opencv2/features2d/features2d.hpp"
|
|
#include "opencv2/nonfree/nonfree.hpp"
|
|
#include <opencv2/core/utility.hpp>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
static void help()
|
|
{
|
|
printf("\nThis program demonstrates how to use common interface for shape transformers\n"
|
|
"Call\n"
|
|
"shape_transformation [image1] [image2]\n");
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
help();
|
|
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE);
|
|
Mat img2 = imread(argv[2], IMREAD_GRAYSCALE);
|
|
if(img1.empty() || img2.empty() || argc<2)
|
|
{
|
|
printf("Can't read one of the images\n");
|
|
return -1;
|
|
}
|
|
|
|
// detecting keypoints
|
|
SurfFeatureDetector detector(5000);
|
|
vector<KeyPoint> keypoints1, keypoints2;
|
|
detector.detect(img1, keypoints1);
|
|
detector.detect(img2, keypoints2);
|
|
|
|
// computing descriptors
|
|
SurfDescriptorExtractor extractor;
|
|
Mat descriptors1, descriptors2;
|
|
extractor.compute(img1, keypoints1, descriptors1);
|
|
extractor.compute(img2, keypoints2, descriptors2);
|
|
|
|
// matching descriptors
|
|
BFMatcher matcher(extractor.defaultNorm());
|
|
vector<DMatch> matches;
|
|
matcher.match(descriptors1, descriptors2, matches);
|
|
|
|
// drawing the results
|
|
namedWindow("matches", 1);
|
|
Mat img_matches;
|
|
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);
|
|
imshow("matches", img_matches);
|
|
|
|
// extract points
|
|
vector<Point2f> pts1, pts2;
|
|
for (size_t ii=0; ii<keypoints1.size(); ii++)
|
|
pts1.push_back( keypoints1[ii].pt );
|
|
for (size_t ii=0; ii<keypoints2.size(); ii++)
|
|
pts2.push_back( keypoints2[ii].pt );
|
|
|
|
// Apply TPS
|
|
Ptr<ThinPlateSplineShapeTransformer> mytps = createThinPlateSplineShapeTransformer(25000); //TPS with a relaxed constraint
|
|
mytps->estimateTransformation(pts1, pts2, matches);
|
|
mytps->warpImage(img2, img2);
|
|
|
|
imshow("Tranformed", img2);
|
|
waitKey(0);
|
|
|
|
return 0;
|
|
}
|