opencv/modules/video/src/camshift.cpp
2012-08-13 19:24:31 +04:00

325 lines
10 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvMeanShift
// Purpose: MeanShift algorithm
// Context:
// Parameters:
// imgProb - 2D object probability distribution
// windowIn - CvRect of CAMSHIFT Window intial size
// numIters - If CAMSHIFT iterates this many times, stop
// windowOut - Location, height and width of converged CAMSHIFT window
// len - If != NULL, return equivalent len
// width - If != NULL, return equivalent width
// Returns:
// Number of iterations CAMSHIFT took to converge
// Notes:
//F*/
CV_IMPL int
cvMeanShift( const void* imgProb, CvRect windowIn,
CvTermCriteria criteria, CvConnectedComp* comp )
{
CvMoments moments;
int i = 0, eps;
CvMat stub, *mat = (CvMat*)imgProb;
CvMat cur_win;
CvRect cur_rect = windowIn;
if( comp )
comp->rect = windowIn;
moments.m00 = moments.m10 = moments.m01 = 0;
mat = cvGetMat( mat, &stub );
if( CV_MAT_CN( mat->type ) > 1 )
CV_Error( CV_BadNumChannels, cvUnsupportedFormat );
if( windowIn.height <= 0 || windowIn.width <= 0 )
CV_Error( CV_StsBadArg, "Input window has non-positive sizes" );
windowIn = cv::Rect(windowIn) & cv::Rect(0, 0, mat->cols, mat->rows);
criteria = cvCheckTermCriteria( criteria, 1., 100 );
eps = cvRound( criteria.epsilon * criteria.epsilon );
for( i = 0; i < criteria.max_iter; i++ )
{
int dx, dy, nx, ny;
double inv_m00;
cur_rect = cv::Rect(cur_rect) & cv::Rect(0, 0, mat->cols, mat->rows);
if( cv::Rect(cur_rect) == cv::Rect() )
{
cur_rect.x = mat->cols/2;
cur_rect.y = mat->rows/2;
}
cur_rect.width = MAX(cur_rect.width, 1);
cur_rect.height = MAX(cur_rect.height, 1);
cvGetSubRect( mat, &cur_win, cur_rect );
cvMoments( &cur_win, &moments );
/* Calculating center of mass */
if( fabs(moments.m00) < DBL_EPSILON )
break;
inv_m00 = moments.inv_sqrt_m00*moments.inv_sqrt_m00;
dx = cvRound( moments.m10 * inv_m00 - windowIn.width*0.5 );
dy = cvRound( moments.m01 * inv_m00 - windowIn.height*0.5 );
nx = cur_rect.x + dx;
ny = cur_rect.y + dy;
if( nx < 0 )
nx = 0;
else if( nx + cur_rect.width > mat->cols )
nx = mat->cols - cur_rect.width;
if( ny < 0 )
ny = 0;
else if( ny + cur_rect.height > mat->rows )
ny = mat->rows - cur_rect.height;
dx = nx - cur_rect.x;
dy = ny - cur_rect.y;
cur_rect.x = nx;
cur_rect.y = ny;
/* Check for coverage centers mass & window */
if( dx*dx + dy*dy < eps )
break;
}
if( comp )
{
comp->rect = cur_rect;
comp->area = (float)moments.m00;
}
return i;
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvCamShift
// Purpose: CAMSHIFT algorithm
// Context:
// Parameters:
// imgProb - 2D object probability distribution
// windowIn - CvRect of CAMSHIFT Window intial size
// criteria - criteria of stop finding window
// windowOut - Location, height and width of converged CAMSHIFT window
// orientation - If != NULL, return distribution orientation
// len - If != NULL, return equivalent len
// width - If != NULL, return equivalent width
// area - sum of all elements in result window
// Returns:
// Number of iterations CAMSHIFT took to converge
// Notes:
//F*/
CV_IMPL int
cvCamShift( const void* imgProb, CvRect windowIn,
CvTermCriteria criteria,
CvConnectedComp* _comp,
CvBox2D* box )
{
const int TOLERANCE = 10;
CvMoments moments;
double m00 = 0, m10, m01, mu20, mu11, mu02, inv_m00;
double a, b, c, xc, yc;
double rotate_a, rotate_c;
double theta = 0, square;
double cs, sn;
double length = 0, width = 0;
int itersUsed = 0;
CvConnectedComp comp;
CvMat cur_win, stub, *mat = (CvMat*)imgProb;
comp.rect = windowIn;
mat = cvGetMat( mat, &stub );
itersUsed = cvMeanShift( mat, windowIn, criteria, &comp );
windowIn = comp.rect;
windowIn.x -= TOLERANCE;
if( windowIn.x < 0 )
windowIn.x = 0;
windowIn.y -= TOLERANCE;
if( windowIn.y < 0 )
windowIn.y = 0;
windowIn.width += 2 * TOLERANCE;
if( windowIn.x + windowIn.width > mat->width )
windowIn.width = mat->width - windowIn.x;
windowIn.height += 2 * TOLERANCE;
if( windowIn.y + windowIn.height > mat->height )
windowIn.height = mat->height - windowIn.y;
cvGetSubRect( mat, &cur_win, windowIn );
/* Calculating moments in new center mass */
cvMoments( &cur_win, &moments );
m00 = moments.m00;
m10 = moments.m10;
m01 = moments.m01;
mu11 = moments.mu11;
mu20 = moments.mu20;
mu02 = moments.mu02;
if( fabs(m00) < DBL_EPSILON )
return -1;
inv_m00 = 1. / m00;
xc = cvRound( m10 * inv_m00 + windowIn.x );
yc = cvRound( m01 * inv_m00 + windowIn.y );
a = mu20 * inv_m00;
b = mu11 * inv_m00;
c = mu02 * inv_m00;
/* Calculating width & height */
square = sqrt( 4 * b * b + (a - c) * (a - c) );
/* Calculating orientation */
theta = atan2( 2 * b, a - c + square );
/* Calculating width & length of figure */
cs = cos( theta );
sn = sin( theta );
rotate_a = cs * cs * mu20 + 2 * cs * sn * mu11 + sn * sn * mu02;
rotate_c = sn * sn * mu20 - 2 * cs * sn * mu11 + cs * cs * mu02;
length = sqrt( rotate_a * inv_m00 ) * 4;
width = sqrt( rotate_c * inv_m00 ) * 4;
/* In case, when tetta is 0 or 1.57... the Length & Width may be exchanged */
if( length < width )
{
double t;
CV_SWAP( length, width, t );
CV_SWAP( cs, sn, t );
theta = CV_PI*0.5 - theta;
}
/* Saving results */
if( _comp || box )
{
int t0, t1;
int _xc = cvRound( xc );
int _yc = cvRound( yc );
t0 = cvRound( fabs( length * cs ));
t1 = cvRound( fabs( width * sn ));
t0 = MAX( t0, t1 ) + 2;
comp.rect.width = MIN( t0, (mat->width - _xc) * 2 );
t0 = cvRound( fabs( length * sn ));
t1 = cvRound( fabs( width * cs ));
t0 = MAX( t0, t1 ) + 2;
comp.rect.height = MIN( t0, (mat->height - _yc) * 2 );
comp.rect.x = MAX( 0, _xc - comp.rect.width / 2 );
comp.rect.y = MAX( 0, _yc - comp.rect.height / 2 );
comp.rect.width = MIN( mat->width - comp.rect.x, comp.rect.width );
comp.rect.height = MIN( mat->height - comp.rect.y, comp.rect.height );
comp.area = (float) m00;
}
if( _comp )
*_comp = comp;
if( box )
{
box->size.height = (float)length;
box->size.width = (float)width;
box->angle = (float)((CV_PI*0.5+theta)*180./CV_PI);
while(box->angle < 0)
box->angle += 360;
while(box->angle >= 360)
box->angle -= 360;
if(box->angle >= 180)
box->angle -= 180;
box->center = cvPoint2D32f( comp.rect.x + comp.rect.width*0.5f,
comp.rect.y + comp.rect.height*0.5f);
}
return itersUsed;
}
cv::RotatedRect cv::CamShift( InputArray _probImage, Rect& window,
TermCriteria criteria )
{
CvConnectedComp comp;
CvBox2D box;
box.center.x = box.center.y = 0; box.angle = 0; box.size.width = box.size.height = 0;
comp.rect.x = comp.rect.y = comp.rect.width = comp.rect.height = 0;
Mat probImage = _probImage.getMat();
CvMat c_probImage = probImage;
cvCamShift(&c_probImage, window, (CvTermCriteria)criteria, &comp, &box);
window = comp.rect;
return RotatedRect(Point2f(box.center), Size2f(box.size), box.angle);
}
int cv::meanShift( InputArray _probImage, Rect& window, TermCriteria criteria )
{
CvConnectedComp comp;
Mat probImage = _probImage.getMat();
CvMat c_probImage = probImage;
int iters = cvMeanShift(&c_probImage, window, (CvTermCriteria)criteria, &comp );
window = comp.rect;
return iters;
}
/* End of file. */