mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00

* Updated UI documentation to address WUI * Added documentation for vx_ calls * Removed vx_store operation overload * Doxyfile updated to enable wide UI * Enable doxygen documentation for vx_ WUI functions * Wide intrinsics definition rework * core: fix SIMD C++ emulator build (supports 128-bit only)
2560 lines
111 KiB
C++
2560 lines
111 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_halide.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
#include "opencv2/core/hal/hal.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
#include <iostream>
|
|
#include <numeric>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
using namespace cv::dnn::ocl4dnn;
|
|
#endif
|
|
#ifdef HAVE_TENGINE
|
|
#include "../tengine4dnn/include/tengine_graph_convolution.hpp"
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class BaseConvolutionLayerImpl : public ConvolutionLayer
|
|
{
|
|
public:
|
|
bool fusedWeights, fusedBias;
|
|
std::vector<double> weightsMultipliers;
|
|
BaseConvolutionLayerImpl(const LayerParams ¶ms)
|
|
{
|
|
setParamsFrom(params);
|
|
getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations, padMode, adjust_pads);
|
|
|
|
numOutput = params.get<int>("num_output");
|
|
int ngroups = params.get<int>("group", 1);
|
|
CV_Assert(numOutput % ngroups == 0);
|
|
|
|
if (kernel_size.size() == 2) {
|
|
kernel = Size(kernel_size[1], kernel_size[0]);
|
|
stride = Size(strides[1], strides[0]);
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (pads_begin[i] != pads_end[i])
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
|
|
}
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
dilation = Size(dilations[1], dilations[0]);
|
|
|
|
adjustPad.height = adjust_pads[0];
|
|
adjustPad.width = adjust_pads[1];
|
|
}
|
|
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
CV_Assert(adjust_pads[i] < strides[i]);
|
|
}
|
|
|
|
fusedWeights = false;
|
|
fusedBias = false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
CV_Assert((inputs.size() > outputs.size() && blobs.empty()) ||
|
|
(!inputs.empty() && (blobs.size() == 1 || blobs.size() == 2)));
|
|
MatSize weightShape = blobs.empty() ? inputs[1].size : blobs[0].size;
|
|
|
|
CV_Assert(inputs[0].dims == outputs[0].dims);
|
|
if (weightShape.dims() == 3)
|
|
{
|
|
kernel_size.assign(1, kernel_size[0]);
|
|
strides.assign(1, strides[0]);
|
|
dilations.assign(1, dilations[0]);
|
|
pads_begin.assign(1, pads_begin[0]);
|
|
pads_end.assign(1, pads_end[0]);
|
|
}
|
|
CV_Assert(weightShape.dims() == kernel_size.size() + 2);
|
|
for (int i = 0; i < kernel_size.size(); i++) {
|
|
CV_Assert(weightShape[i + 2] == kernel_size[i]);
|
|
}
|
|
|
|
const Mat &input = inputs[0];
|
|
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || input.dims == 4 || input.dims == 5) && (input.type() == CV_32F || input.type() == CV_16S));
|
|
for (size_t i = 0; i < outputs.size(); i++)
|
|
{
|
|
CV_Assert(inputs[i].type() == input.type());
|
|
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]);
|
|
for (int j = 0; j < inputs[i].dims; j++) {
|
|
CV_Assert(inputs[i].size[j] == input.size[j]);
|
|
}
|
|
}
|
|
|
|
std::vector<int> inpShape;
|
|
std::vector<int> outShape;
|
|
for (int i = 2; i < inputs[0].dims; i++) {
|
|
inpShape.push_back(inputs[0].size[i]);
|
|
outShape.push_back(outputs[0].size[i]);
|
|
}
|
|
getConvPoolPaddings(inpShape, kernel_size, strides, padMode, pads_begin, pads_end);
|
|
if (pads_begin.size() == 2) {
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (pads_begin[i] != pads_end[i])
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
|
|
}
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
}
|
|
fusedWeights = false;
|
|
fusedBias = false;
|
|
}
|
|
|
|
bool hasBias() const
|
|
{
|
|
return blobs.size() >= 2;
|
|
}
|
|
|
|
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
|
|
bool is1x1() const
|
|
{
|
|
return (kernel.height == 1 && kernel.width == 1) &&
|
|
(stride.height == 1 && stride.width == 1) &&
|
|
(dilation.height == 1 && dilation.width == 1);
|
|
}
|
|
|
|
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
|
|
{
|
|
Mat w, b;
|
|
top->getScaleShift(w, b);
|
|
if (!w.empty() || !b.empty())
|
|
{
|
|
fuseWeights(w, b);
|
|
fusedWeights = fusedWeights || !w.empty();
|
|
fusedBias = fusedBias || (hasBias() && !w.empty()) || !b.empty();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual void fuseWeights(const Mat& w_, const Mat& b_) = 0;
|
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
|
|
const std::vector<Mat*> &inputs,
|
|
const std::vector<Mat> &outputs,
|
|
int targetId) const CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
if (targetId != DNN_TARGET_CPU)
|
|
{
|
|
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
|
|
return;
|
|
}
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
|
|
Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];
|
|
|
|
int outW, outH, outC, outN;
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
if (outW == 1 || outH <= 2)
|
|
return;
|
|
|
|
if (is1x1() || outC <= 16)
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.fuse(yo, n, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
else
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.split(c, co, ci, 16)
|
|
.fuse(yo, co, tile).fuse(n, tile, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
padded_input.compute_at(top, yi);
|
|
#endif // HAVE_HALIDE
|
|
}
|
|
};
|
|
|
|
|
|
#define IS_POWER_LAYER(layer) \
|
|
(!layer.empty() && !layer->type.compare("Power"))
|
|
//TODO: simultaneously convolution and bias addition for cache optimization
|
|
class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
|
|
Mat weightsMat;
|
|
std::vector<float> biasvec;
|
|
std::vector<float> reluslope;
|
|
Ptr<ActivationLayer> activ;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
Ptr<OCL4DNNConvSpatial<float> > convolutionOp;
|
|
std::vector<UMat> umat_blobs;
|
|
bool newActiv;
|
|
ocl4dnnFusedActiv_t activType;
|
|
float power;
|
|
#endif
|
|
ConvolutionLayerImpl(const LayerParams ¶ms) : BaseConvolutionLayerImpl(params)
|
|
{
|
|
#ifdef HAVE_OPENCL
|
|
newActiv = false;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
|
power = 0.f;
|
|
#endif
|
|
}
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
int dims = inpShape.size();
|
|
int inpD = dims == 5 ? inpShape[2] : 1;
|
|
int inpH = inpShape[dims - 2];
|
|
int inpW = inpShape.back();
|
|
int inpGroupCn = blobs[0].size[1];
|
|
int ksize = inpGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
return shape(inpD * inpH * inpW, ksize);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
size_t ksize = kernel_size.size();
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
bool isArmTarget = preferableTarget == DNN_TARGET_CPU && isArmComputePlugin();
|
|
if (isArmTarget && blobs.empty())
|
|
return false;
|
|
if (ksize == 1)
|
|
return isArmTarget;
|
|
if (ksize == 3)
|
|
return preferableTarget != DNN_TARGET_MYRIAD && !isArmTarget;
|
|
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || preferableTarget != DNN_TARGET_MYRIAD) && blobs.empty())
|
|
return false;
|
|
return (preferableTarget != DNN_TARGET_MYRIAD || dilation.width == dilation.height);
|
|
}
|
|
#endif
|
|
if (backendId == DNN_BACKEND_OPENCV)
|
|
return ksize >= 1 && ksize <= 3;
|
|
#ifdef HAVE_HALIDE
|
|
if (backendId == DNN_BACKEND_HALIDE)
|
|
return ksize == 2 && !blobs.empty();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty() || inputs.size() > 1);
|
|
const int* weightShape = blobs.empty() ? &inputs[1][0] : blobs[0].size.p;
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)weightShape[0]);
|
|
|
|
internals.clear();
|
|
|
|
CV_Assert(inputs.size() != 0);
|
|
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
|
|
|
|
int outCn = weightShape[0];
|
|
std::vector<int> outShape;
|
|
outShape.push_back(inputs[0][0]);
|
|
outShape.push_back(outCn);
|
|
|
|
int inpCn = inputs[0][1];
|
|
if (padMode.empty())
|
|
{
|
|
for (int i = 0; i < inpShape.size(); i++)
|
|
outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1);
|
|
}
|
|
else
|
|
{
|
|
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape);
|
|
}
|
|
|
|
int ngroups = inpCn / weightShape[1];
|
|
if (ngroups == 0 || ngroups * weightShape[1] != inpCn)
|
|
CV_Error(Error::StsError, format("Number of input channels should "
|
|
"be multiple of %d but got %d", weightShape[1], inpCn));
|
|
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
|
|
outputs.resize(1, outShape);
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
|
|
|
|
std::vector<Mat> inputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
|
|
// use vectorized (i.e. with intrinsics) loops without tail processing
|
|
if (!blobs.empty())
|
|
{
|
|
Mat wm = blobs[0].reshape(1, numOutput);
|
|
if( wm.step1() % VEC_ALIGN != 0 )
|
|
{
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
|
|
wm.copyTo(wm_aligned);
|
|
wm = wm_aligned;
|
|
}
|
|
weightsMat = wm;
|
|
}
|
|
else
|
|
{
|
|
// initialized in .forward()
|
|
weightsMat.release();
|
|
}
|
|
|
|
weightsMultipliers.assign(numOutput, 1.0);
|
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, numOutput) : Mat();
|
|
biasvec.resize(numOutput+2);
|
|
if( biasMat.empty() )
|
|
{
|
|
for(int i = 0; i < numOutput; i++ )
|
|
biasvec[i] = 0.f;
|
|
}
|
|
else
|
|
{
|
|
for(int i = 0; i < numOutput; i++ )
|
|
biasvec[i] = biasMat.at<float>(i);
|
|
}
|
|
#ifdef HAVE_OPENCL
|
|
convolutionOp.release();
|
|
#endif
|
|
}
|
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
|
{
|
|
if ((!activ.empty() && !layer.empty()) || blobs.empty())
|
|
return false;
|
|
|
|
activ = layer;
|
|
if (activ.empty())
|
|
reluslope.clear();
|
|
#ifdef HAVE_OPENCL
|
|
newActiv = true;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
|
|
|
if (IS_DNN_OPENCL_TARGET(preferableTarget))
|
|
{
|
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
|
|
if (!activ_power.empty())
|
|
{
|
|
if (activ_power->scale != 1.0f) // not supported well by implementation, #17964
|
|
{
|
|
// FIXIT no way to check number of blobs (like, eltwise input)
|
|
CV_LOG_DEBUG(NULL, "DNN/OpenCL: can't configure Power activation (scale != 1.0f)");
|
|
activ.release();
|
|
newActiv = false;
|
|
return false;
|
|
}
|
|
if (activ_power->scale != 1.f || activ_power->shift != 0.f)
|
|
{
|
|
const int outCh = blobs[0].size[0];
|
|
fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)),
|
|
Mat(1, outCh, CV_32F, Scalar(activ_power->shift)));
|
|
}
|
|
|
|
power = activ_power->power;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_POWER;
|
|
}
|
|
Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
|
|
if (!activ_tanh.empty())
|
|
{
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_TANH;
|
|
}
|
|
}
|
|
#endif
|
|
return !activ.empty();
|
|
}
|
|
|
|
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
|
{
|
|
// Convolution weights have OIHW data layout. Parameters fusion in case of
|
|
// (conv(I) + b1 ) * w + b2
|
|
// means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
|
|
const int outCn = weightsMat.size[0];
|
|
Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at<float>(0))) : w_;
|
|
Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at<float>(0))) : b_;
|
|
CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
|
|
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
|
|
|
|
if (!w.empty())
|
|
{
|
|
// Keep origin weights unchanged.
|
|
if (weightsMat.data == blobs[0].data)
|
|
weightsMat = weightsMat.clone();
|
|
|
|
Mat originWeights = blobs[0].reshape(1, outCn);
|
|
for (int i = 0; i < outCn; ++i)
|
|
{
|
|
double wi = w.at<float>(i);
|
|
weightsMultipliers[i] *= wi;
|
|
cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i));
|
|
biasvec[i] *= wi;
|
|
}
|
|
}
|
|
|
|
if (!b.empty())
|
|
{
|
|
for (int i = 0; i < outCn; ++i)
|
|
biasvec[i] += b.at<float>(i);
|
|
}
|
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
const int inpCn = inputBuffer.channels();
|
|
const int outCn = blobs[0].size[0];
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
const int outGroupCn = outCn / group;
|
|
|
|
Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
if (pad.width || pad.height)
|
|
{
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
}
|
|
else
|
|
{
|
|
padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
|
|
}
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
|
|
Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
|
|
Halide::Expr kc = r.z;
|
|
for (int i = 1; i < group; ++i)
|
|
{
|
|
kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z);
|
|
}
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
|
|
weights(r.x, r.y, r.z, c));
|
|
if (hasBias())
|
|
{
|
|
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
|
|
std::vector<size_t> dims = input->getDims();
|
|
CV_Assert(dims.size() == 4 || dims.size() == 5);
|
|
const int inpCn = dims[1];
|
|
const int outCn = blobs[0].size[0];
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
InferenceEngine::Layout layout = (dims.size() == 4) ? InferenceEngine::Layout::OIHW :
|
|
InferenceEngine::Layout::NCDHW;
|
|
|
|
auto ieWeights = wrapToInfEngineBlob(blobs[0], layout);
|
|
if (fusedWeights)
|
|
{
|
|
if (weightsMat.isContinuous())
|
|
{
|
|
Mat cvWeights = weightsMat.reshape(1, blobs[0].dims, blobs[0].size);
|
|
ieWeights = wrapToInfEngineBlob(cvWeights, layout);
|
|
}
|
|
else
|
|
{
|
|
ieWeights = InferenceEngine::make_shared_blob<float>({
|
|
InferenceEngine::Precision::FP32,
|
|
ieWeights->getTensorDesc().getDims(), layout
|
|
});
|
|
ieWeights->allocate();
|
|
|
|
Mat newWeights = infEngineBlobToMat(ieWeights).reshape(1, outCn);
|
|
Mat cvWeights = weightsMat.colRange(0, newWeights.cols);
|
|
cvWeights.copyTo(newWeights);
|
|
}
|
|
}
|
|
InferenceEngine::Blob::Ptr ieBiases;
|
|
if (hasBias() || fusedBias)
|
|
{
|
|
Mat biasesMat({outCn}, CV_32F, &biasvec[0]);
|
|
ieBiases = wrapToInfEngineBlob(biasesMat, {(size_t)outCn}, InferenceEngine::Layout::C);
|
|
}
|
|
|
|
InferenceEngine::Builder::ConvolutionLayer ieLayer(name);
|
|
|
|
ieLayer.setKernel(kernel_size);
|
|
ieLayer.setStrides(strides);
|
|
ieLayer.setDilation(dilations);
|
|
ieLayer.setPaddingsBegin(pads_begin);
|
|
ieLayer.setPaddingsEnd(pads_end);
|
|
ieLayer.setGroup((size_t)group);
|
|
ieLayer.setOutDepth((size_t)outCn);
|
|
|
|
InferenceEngine::Builder::Layer l = ieLayer;
|
|
addConstantData("weights", ieWeights, l);
|
|
if (ieBiases)
|
|
addConstantData("biases", ieBiases, l);
|
|
|
|
if (!padMode.empty())
|
|
l.getParameters()["auto_pad"] = padMode == "VALID" ? std::string("valid") : std::string("same_upper");
|
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(l));
|
|
}
|
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1);
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
std::vector<size_t> dims = ieInpNode->get_shape();
|
|
CV_Check(dims.size(), dims.size() >= 3 && dims.size() <= 5, "");
|
|
std::shared_ptr<ngraph::Node> ieWeights = nodes.size() > 1 ? nodes[1].dynamicCast<InfEngineNgraphNode>()->node : nullptr;
|
|
if (nodes.size() > 1)
|
|
CV_Assert(ieWeights); // dynamic_cast should not fail
|
|
const int inpCn = dims[1];
|
|
const int inpGroupCn = nodes.size() > 1 ? ieWeights->get_shape()[1] : blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
|
|
std::vector<size_t> kernel_shape;
|
|
if (group != 1)
|
|
{
|
|
kernel_shape.push_back(group);
|
|
}
|
|
kernel_shape.push_back(numOutput / group);
|
|
kernel_shape.push_back(inpCn / group);
|
|
std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape));
|
|
|
|
if (nodes.size() == 1)
|
|
{
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, blobs[0].data);
|
|
if (fusedWeights)
|
|
{
|
|
if (weightsMat.isContinuous())
|
|
{
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, weightsMat.data);
|
|
}
|
|
else
|
|
{
|
|
Mat newWeights;
|
|
Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / numOutput);
|
|
cvWeights.copyTo(newWeights);
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, newWeights.data);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
|
ngraph::Shape{kernel_shape.size()}, std::vector<int64_t>(kernel_shape.begin(), kernel_shape.end()));
|
|
ieWeights = std::make_shared<ngraph::op::v1::Reshape>(ieWeights, shape, true);
|
|
}
|
|
|
|
ngraph::op::PadType pad_type = ngraph::op::PadType::EXPLICIT;
|
|
if (!padMode.empty())
|
|
pad_type = padMode == "VALID" ? ngraph::op::PadType::VALID : ngraph::op::PadType::SAME_UPPER;
|
|
|
|
std::shared_ptr<ngraph::Node> conv_node;
|
|
if (group != 1) {
|
|
conv_node = std::make_shared<ngraph::op::v1::GroupConvolution>(
|
|
ieInpNode, ieWeights,
|
|
ngraph::Strides(strides),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
|
|
ngraph::Strides(dilations),
|
|
pad_type);
|
|
} else {
|
|
conv_node = std::make_shared<ngraph::op::v1::Convolution>(
|
|
ieInpNode, ieWeights,
|
|
ngraph::Strides(strides),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
|
|
ngraph::Strides(dilations),
|
|
pad_type);
|
|
}
|
|
|
|
if (hasBias() || fusedBias || nodes.size() == 3)
|
|
{
|
|
std::vector<size_t> shape(conv_node->get_shape().size(), 1);
|
|
shape[1] = conv_node->get_shape()[1];
|
|
std::shared_ptr<ngraph::Node> bias;
|
|
if (nodes.size() == 3)
|
|
{
|
|
auto bias_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
|
ngraph::Shape{shape.size()}, std::vector<int64_t>(shape.begin(), shape.end()));
|
|
bias = std::make_shared<ngraph::op::v1::Reshape>(nodes[2].dynamicCast<InfEngineNgraphNode>()->node, bias_shape, true);
|
|
}
|
|
else
|
|
{
|
|
bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), biasvec.data());
|
|
}
|
|
auto conv_bias = std::make_shared<ngraph::op::v1::Add>(conv_node, bias, ngraph::op::AutoBroadcastType::NUMPY);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_bias));
|
|
}
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_node));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
class ParallelConv : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };
|
|
|
|
const Mat* input_;
|
|
const Mat* weights_;
|
|
Mat* output_;
|
|
int outShape[4]; // used only for conv2d
|
|
std::vector<size_t> kernel_size, pads_begin, pads_end, strides, dilations;
|
|
int ngroups_, nstripes_;
|
|
std::vector<int> ofstab_;
|
|
const std::vector<float>* biasvec_;
|
|
const std::vector<float>* reluslope_;
|
|
const ActivationLayer* activ_;
|
|
bool is1x1_;
|
|
bool useAVX;
|
|
bool useAVX2;
|
|
bool useAVX512;
|
|
int blk_size_cn;
|
|
|
|
ParallelConv()
|
|
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
|
|
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false)
|
|
, blk_size_cn(0)
|
|
{}
|
|
|
|
static void run( const Mat& input, Mat& output, const Mat& weights,
|
|
const std::vector<float>& biasvec,
|
|
const std::vector<float>& reluslope,
|
|
const std::vector<size_t>& kernel_size, const std::vector<size_t>& strides,
|
|
const std::vector<size_t>& pads_begin, const std::vector<size_t>& pads_end,
|
|
const std::vector<size_t>& dilations,
|
|
const ActivationLayer* activ, int ngroups, int nstripes )
|
|
{
|
|
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
bool isConv1D = input.dims == 3;
|
|
bool isConv2D = input.dims == 4;
|
|
bool isConv3D = input.dims == 5;
|
|
CV_CheckEQ(static_cast<int>(kernel_size.size()), input.dims - 2, "");
|
|
CV_Assert_N(input.dims == output.dims,
|
|
input.size[0] == output.size[0],
|
|
weights.rows == output.size[1],
|
|
weights.cols == (input.size[1]/ngroups)*karea,
|
|
input.type() == output.type(),
|
|
input.type() == weights.type(),
|
|
input.type() == CV_32FC1,
|
|
input.isContinuous(),
|
|
output.isContinuous(),
|
|
biasvec.size() == (size_t)output.size[1]+2);
|
|
CV_Check(weights.step1(), weights.step1() % VEC_ALIGN == 0, "");
|
|
CV_CheckType(weights.type(), CV_32FC1, "");
|
|
ParallelConv p;
|
|
|
|
p.input_ = &input;
|
|
p.weights_ = &weights;
|
|
p.output_ = &output;
|
|
int max_ind = isConv1D? 3: 4;
|
|
for( int i = 0; i < max_ind; i++ ) p.outShape[i] = output.size[i];
|
|
p.outShape[1] /= ngroups;
|
|
|
|
p.kernel_size = kernel_size; p.strides = strides; p.dilations = dilations;
|
|
p.pads_begin = pads_begin; p.pads_end = pads_end;
|
|
|
|
p.ngroups_ = ngroups;
|
|
p.nstripes_ = nstripes;
|
|
|
|
int inpCnAll = input.size[1];
|
|
int depth = (input.dims == 5) ? input.size[2] : 1;
|
|
int width = input.size[input.dims - 1];
|
|
int height = isConv1D? 1 : input.size[input.dims - 2];
|
|
int inpCn = inpCnAll / ngroups;
|
|
|
|
p.is1x1_ = (isConv2D && kernel_size[0] == 1 && kernel_size[1] == 1 &&
|
|
pads_begin[0] == 0 && pads_begin[1] == 0) ||
|
|
(isConv1D && pads_begin[0] == 0 && kernel_size[0] == 1);
|
|
|
|
p.useAVX = checkHardwareSupport(CPU_AVX) && isConv2D;
|
|
p.useAVX2 = checkHardwareSupport(CPU_AVX2) && isConv2D;
|
|
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX && isConv2D;
|
|
|
|
int kernel_d = isConv3D? kernel_size[0] : 1;
|
|
int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2];
|
|
int kernel_w = kernel_size.back();
|
|
|
|
int blk_size_cn0 = cvCeil(800./(kernel_w*kernel_h));
|
|
int ncn = 16;
|
|
while (ncn*2 < blk_size_cn0 && ncn < inpCn)
|
|
ncn *= 2;
|
|
ncn = std::min(ncn, inpCn);
|
|
p.blk_size_cn = ncn;
|
|
|
|
int dil_d = isConv3D? dilations[0] : 1;
|
|
int dil_h = isConv1D? 1 : dilations[dilations.size() - 2];
|
|
int dil_w = dilations.back();
|
|
|
|
p.ofstab_.resize(karea * ncn);
|
|
int* ofstab = &p.ofstab_[0];
|
|
|
|
if (isConv1D)
|
|
{
|
|
for( int k = 0; k < ncn; k++ )
|
|
for( int k_c = 0; k_c < kernel_w; k_c++ )
|
|
ofstab[k*kernel_w + k_c] = k*width + k_c*dil_w;
|
|
}
|
|
else if (isConv2D)
|
|
{
|
|
for( int k = 0; k < ncn; k++ )
|
|
for( int k_r = 0; k_r < kernel_h; k_r++ )
|
|
for( int k_c = 0; k_c < kernel_w; k_c++ )
|
|
ofstab[(k*kernel_h + k_r)*kernel_w + k_c] =
|
|
(k*height + k_r*dil_h)*width + k_c*dil_w;
|
|
}
|
|
else
|
|
{
|
|
for( int k = 0; k < ncn; k++ )
|
|
for (int k_d = 0; k_d < kernel_d; k_d++)
|
|
for( int k_r = 0; k_r < kernel_h; k_r++ )
|
|
for( int k_c = 0; k_c < kernel_w; k_c++ )
|
|
ofstab[(k*kernel_d*kernel_h + k_d*kernel_h + k_r)*kernel_w + k_c] =
|
|
(k*depth*height + k_d*dil_d*height + k_r*dil_h)*width + k_c*dil_w;
|
|
}
|
|
|
|
p.biasvec_ = &biasvec;
|
|
p.reluslope_ = &reluslope;
|
|
p.activ_ = p.reluslope_->empty() ? activ : 0;
|
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes);
|
|
}
|
|
|
|
virtual void operator ()(const Range &r0) const CV_OVERRIDE
|
|
{
|
|
const int valign = ConvolutionLayerImpl::VEC_ALIGN;
|
|
int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
|
|
bool isConv1D = input_->dims == 3;
|
|
bool isConv2D = input_->dims == 4;
|
|
bool isConv3D = input_->dims == 5;
|
|
|
|
int outW = output_->size[output_->dims - 1];
|
|
int outH = isConv1D? 1 : output_->size[output_->dims - 2];
|
|
int outCn = output_->size[1]/ngroups;
|
|
|
|
int depth = isConv3D? input_->size[2] : 1;
|
|
int height = isConv1D? 1 : input_->size[input_->dims - 2];
|
|
int width = input_->size[input_->dims - 1];
|
|
int inpCn = input_->size[1]/ngroups;
|
|
|
|
const int nstripes = nstripes_;
|
|
|
|
int kernel_d = isConv3D? kernel_size[0] : 1;
|
|
int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2];
|
|
int kernel_w = kernel_size.back();
|
|
int karea = kernel_w*kernel_h*kernel_d;
|
|
|
|
int pad_d = isConv3D? pads_begin[0] : 0;
|
|
int pad_t = isConv1D? 0 : pads_begin[pads_begin.size() - 2];
|
|
int pad_l = pads_begin.back();
|
|
|
|
int stride_d = isConv3D? strides[0] : 0;
|
|
int stride_h = isConv1D? 0 : strides[strides.size() - 2];
|
|
int stride_w = strides.back();
|
|
|
|
int dilation_d = isConv3D? dilations[0] : 1;
|
|
int dilation_h = isConv1D? 1 : dilations[dilations.size() - 2];
|
|
int dilation_w = dilations.back();
|
|
|
|
int i, j, k, d;
|
|
int inpPlaneSize = (int)input_->total(2);
|
|
int outPlaneSize = (int)output_->total(2);
|
|
bool is1x1 = is1x1_;
|
|
|
|
int stripesPerSample;
|
|
int stripeSize;
|
|
Range r = r0;
|
|
bool depthWiseConvolution = !is1x1 && isConv2D && ngroups > 1 && inpCn == 1 &&
|
|
outCn == 1 && kernel_d == 1 && dilation_d == 1 && stride_d == 0 && pad_d == 0 &&
|
|
width >= 16 + dilation_w*(kernel_w - 1);
|
|
// for now only 3x3 depth-wise convolutions are supported
|
|
depthWiseConvolution = depthWiseConvolution && kernel_w == 3 && kernel_h == 3 &&
|
|
// computing at most 1 pixel from each side can involve padding
|
|
max(stride_w, dilation_w) >= pad_l && max(stride_h, dilation_h) >= pad_t &&
|
|
pad_l <= 1 && pad_t <= 1;
|
|
|
|
if( !depthWiseConvolution && nstripes >= batchSize*2 )
|
|
{
|
|
stripesPerSample = nstripes/batchSize;
|
|
stripeSize = (int)alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign);
|
|
stripeSize = std::min(stripeSize, outPlaneSize);
|
|
}
|
|
else
|
|
{
|
|
stripesPerSample = 1;
|
|
int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
|
|
r.start *= samplesPerStripe;
|
|
r.end *= samplesPerStripe;
|
|
stripeSize = outPlaneSize;
|
|
}
|
|
|
|
const float* data_inp0_ = input_->ptr<float>();
|
|
const int* ofstab = &ofstab_[0];
|
|
const float* wptr_orig_ = weights_->ptr<float>();
|
|
size_t wstep = weights_->step1();
|
|
const float* biasptr_ = &biasvec_->at(0);
|
|
const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0);
|
|
float* data_out0_ = output_->ptr<float>();
|
|
AutoBuffer<float> rowbuf0_;
|
|
float* rowbuf0 = 0;
|
|
bool use_rowbuf = !depthWiseConvolution;
|
|
int blk_size = depthWiseConvolution ? outPlaneSize : min((int)BLK_SIZE, stripeSize);
|
|
|
|
// im2row buffer is not used for depth-wise convolution
|
|
if(use_rowbuf)
|
|
{
|
|
size_t rowbufsz = alignSize(karea*blk_size_cn, valign)*min((int)BLK_SIZE, blk_size);
|
|
//printf("karea=%d, blk_size_cn=%d, rowbufsz=%d, stripeSize=%d\n", karea, blk_size_cn, (int)rowbufsz, stripeSize);
|
|
rowbuf0_.allocate(rowbufsz + valign);
|
|
rowbuf0 = alignPtr(rowbuf0_.data(), (int)(valign*sizeof(float)));
|
|
// we clear the buffer once; ultimately, it lets us to avoid
|
|
// tail processing after running the unrolled/vectorized loop.
|
|
// the main idea is to make sure that the tail (a.k.a. padding) of each row
|
|
// (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
|
|
// does not contain NaNs or Infs. Because the padding in the weights
|
|
// matrix is explicitly initialized with 0's, we handle all other
|
|
// cases nicely, i.e. we can skip expliciting re-initialization
|
|
// of the padding - we just retain elements from the previous iteration
|
|
// of the loop over channels (cn0).
|
|
memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) );
|
|
}
|
|
|
|
for( int stripe = r.start; stripe < r.end; stripe++ )
|
|
{
|
|
int subsampleIdx = stripe/stripesPerSample;
|
|
if( subsampleIdx >= batchSize )
|
|
break;
|
|
int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
|
|
int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
|
|
const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
|
|
float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
|
|
int startOutCn = (subsampleIdx % ngroups)*outCn;
|
|
const float* wptr_orig = wptr_orig_ + wstep*startOutCn;
|
|
const float* biasptr = biasptr_ + startOutCn;
|
|
|
|
for( int cn0 = 0; cn0 < inpCn; cn0 += blk_size_cn )
|
|
{
|
|
int cn1 = std::min(cn0 + blk_size_cn, inpCn);
|
|
int ncn = cn1 - cn0, vsz = karea*ncn;
|
|
int vsz_a = (int)alignSize(vsz, valign);
|
|
const float* wptr = wptr_orig + cn0*karea;
|
|
// we apply [Channels][P]ReLU (if any) during the final pass only.
|
|
const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0;
|
|
|
|
for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += blk_size )
|
|
{
|
|
int ofs, ofs1 = std::min(ofs0 + blk_size, stripeEnd);
|
|
int bsz = ofs1 - ofs0;
|
|
|
|
int out_d = ofs0 / (outH * outW);
|
|
int out_i = (ofs0 - out_d * outH * outW) / outW;
|
|
int out_j = ofs0 % outW;
|
|
|
|
if (depthWiseConvolution)
|
|
{
|
|
CV_Assert(out_i == 0 && out_j == 0);
|
|
int in_d = out_d * stride_d - pad_d;
|
|
const float* inptr_ = data_inp0 + (cn0*depth*height + in_d*height)*width;
|
|
float* outptr_ = data_out0 + ofs0;
|
|
|
|
#if CV_TRY_AVX2
|
|
if(useAVX2)
|
|
opt_AVX2::fastDepthwiseConv(wptr, kernel_h, kernel_w,
|
|
stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l,
|
|
biasptr, relu, inptr_, height, width, outptr_, out_d, outH, outW);
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if(useAVX)
|
|
opt_AVX::fastDepthwiseConv(wptr, kernel_h, kernel_w,
|
|
stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l,
|
|
biasptr, relu, inptr_, height, width, outptr_, out_d, outH, outW);
|
|
else
|
|
#endif
|
|
{
|
|
const float w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
|
|
w10 = wptr[3], w11 = wptr[4], w12 = wptr[5],
|
|
w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8];
|
|
int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w);
|
|
float relu_coeff = relu ? relu[out_d] : 1.f, bias = biasptr[out_d];
|
|
|
|
for (int out_i = 0; out_i < outH; out_i++)
|
|
{
|
|
int in_i = out_i * stride_h - pad_t, out_j = 0;
|
|
const float* imgptr0 = inptr_ + in_i*width;
|
|
const float* imgptr1 = imgptr0 + dilation_h*width;
|
|
const float* imgptr2 = imgptr0 + (dilation_h*2)*width;
|
|
float out, w00 = w00_, w01 = w01_, w02 = w02_;
|
|
float w20 = w20_, w21 = w21_, w22 = w22_;
|
|
if (in_i < 0)
|
|
{
|
|
w00 = w01 = w02 = 0.f;
|
|
imgptr0 = imgptr1;
|
|
}
|
|
else if (in_i + dilation_h*(kernel_h-1) >= height)
|
|
{
|
|
w20 = w21 = w22 = 0.f;
|
|
imgptr2 = imgptr1;
|
|
}
|
|
float* outptr = outptr_ + out_i*outW;
|
|
if (pad_l > 0)
|
|
{
|
|
out = imgptr0[0]*w01 + imgptr0[dilation_w]*w02 +
|
|
imgptr1[0]*w11 + imgptr1[dilation_w]*w12 +
|
|
imgptr2[0]*w21 + imgptr2[dilation_w]*w22 + bias;
|
|
if (relu)
|
|
out = out > 0.f ? out : out*relu_coeff;
|
|
outptr[0] = out;
|
|
out_j = 1;
|
|
}
|
|
|
|
#if CV_SIMD
|
|
// maybe with AVX or AVX512 strided depthwise convolution
|
|
// can be accelerated with vector code, but with 4xfloat vectors
|
|
// it's hardly the case
|
|
if( stride_w == 1 )
|
|
{
|
|
const int VECSZ = v_float32::nlanes;
|
|
const int out_delta = VECSZ/stride_w;
|
|
v_float32 vw00 = vx_setall_f32(w00), vw01 = vx_setall_f32(w01), vw02 = vx_setall_f32(w02),
|
|
vw10 = vx_setall_f32(w10), vw11 = vx_setall_f32(w11), vw12 = vx_setall_f32(w12),
|
|
vw20 = vx_setall_f32(w20), vw21 = vx_setall_f32(w21), vw22 = vx_setall_f32(w22);
|
|
v_float32 z = vx_setzero_f32(), vbias = vx_setall_f32(bias), vrc = vx_setall_f32(relu_coeff);
|
|
for( ; out_j < outW1; out_j += out_delta )
|
|
{
|
|
if (out_j + out_delta > outW1)
|
|
{
|
|
if (out_j <= pad_l)
|
|
break;
|
|
out_j = outW1 - out_delta;
|
|
}
|
|
int in_j = out_j * stride_w - pad_l;
|
|
v_float32 v00 = vx_load(imgptr0 + in_j),
|
|
v01 = vx_load(imgptr0 + in_j + dilation_w),
|
|
v02 = vx_load(imgptr0 + in_j + dilation_w*2),
|
|
v10 = vx_load(imgptr1 + in_j),
|
|
v11 = vx_load(imgptr1 + in_j + dilation_w),
|
|
v12 = vx_load(imgptr1 + in_j + dilation_w*2),
|
|
v20 = vx_load(imgptr2 + in_j),
|
|
v21 = vx_load(imgptr2 + in_j + dilation_w),
|
|
v22 = vx_load(imgptr2 + in_j + dilation_w*2);
|
|
|
|
v_float32 vout = v00*vw00 + v01*vw01 + v02*vw02 +
|
|
v10*vw10 + v11*vw11 + v12*vw12 +
|
|
v20*vw20 + v21*vw21 + v22*vw22 + vbias;
|
|
if (relu)
|
|
vout = v_select(vout > z, vout, vout*vrc);
|
|
v_store(outptr + out_j, vout);
|
|
}
|
|
}
|
|
#endif
|
|
for (; out_j < outW1; out_j++)
|
|
{
|
|
int in_j = out_j * stride_w - pad_l;
|
|
out = imgptr0[in_j]*w00 + imgptr0[in_j + dilation_w]*w01 + imgptr0[in_j + dilation_w*2]*w02 +
|
|
imgptr1[in_j]*w10 + imgptr1[in_j + dilation_w]*w11 + imgptr1[in_j + dilation_w*2]*w12 +
|
|
imgptr2[in_j]*w20 + imgptr2[in_j + dilation_w]*w21 + imgptr2[in_j + dilation_w*2]*w22 + bias;
|
|
if (relu)
|
|
out = out > 0.f ? out : out*relu_coeff;
|
|
outptr[out_j] = out;
|
|
}
|
|
|
|
for (; out_j < outW; out_j++ )
|
|
{
|
|
int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
|
|
float s0 = 1.f, s1 = 1.f, s2 = 1.f;
|
|
if (in_j0 >= width)
|
|
{
|
|
in_j0 = 0;
|
|
s0 = 0.f;
|
|
}
|
|
if (in_j1 >= width)
|
|
{
|
|
in_j1 = 0;
|
|
s1 = 0.f;
|
|
}
|
|
if (in_j2 >= width)
|
|
{
|
|
in_j2 = 0;
|
|
s2 = 0.f;
|
|
}
|
|
out = imgptr0[in_j0]*w00*s0 + imgptr0[in_j1]*w01*s1 + imgptr0[in_j2]*w02*s2 +
|
|
imgptr1[in_j0]*w10*s0 + imgptr1[in_j1]*w11*s1 + imgptr1[in_j2]*w12*s2 +
|
|
imgptr2[in_j0]*w20*s0 + imgptr2[in_j1]*w21*s1 + imgptr2[in_j2]*w22*s2 + bias;
|
|
if (relu)
|
|
out = out > 0.f ? out : out*relu_coeff;
|
|
outptr[out_j] = out;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// do im2row for a part of input tensor
|
|
float* rowbuf = rowbuf0;
|
|
|
|
if (isConv1D)
|
|
{
|
|
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
|
|
{
|
|
int delta = std::min(ofs1 - ofs, outW - out_j);
|
|
int out_j1 = out_j + delta;
|
|
|
|
int in_j = out_j * stride_w - pad_l;
|
|
const float* imgptr = data_inp0 + cn0*width + in_j;
|
|
ofs += delta;
|
|
|
|
// do im2row for a part of input tensor
|
|
if( is1x1 )
|
|
{
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
rowbuf[k] = imgptr[k*inpPlaneSize];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
|
|
{
|
|
// this condition should be true for most of the tensor elements, i.e.
|
|
// most of the time the kernel aperture is inside the tensor X-Y plane.
|
|
if( out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
int k1 = ofstab[k];
|
|
float v0 = imgptr[k1];
|
|
float v1 = imgptr[k1 + stride_w];
|
|
rowbuf[k] = v0;
|
|
rowbuf[k+vsz_a] = v1;
|
|
}
|
|
out_j++;
|
|
rowbuf += vsz_a;
|
|
imgptr += stride_w;
|
|
in_j += stride_w;
|
|
}
|
|
else
|
|
{
|
|
int i0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
|
|
int i1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
|
|
|
|
// here some non-continuous sub-row of the row will not be
|
|
// filled from the tensor; we need to make sure that the uncovered
|
|
// elements are explicitly set to 0's. the easiest way is to
|
|
// set all the elements to 0's before the loop.
|
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
|
|
for( k = 0; k < ncn; k++ )
|
|
{
|
|
for( i = i0; i < i1; i++ )
|
|
{
|
|
int imgofs = k*width + i*dilation_w;
|
|
rowbuf[k*kernel_w + i] = imgptr[imgofs];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (isConv2D)
|
|
{
|
|
if( is1x1 && stride_w == 1 && stride_h == 1 )
|
|
{
|
|
const float* imgptr = data_inp0 + (cn0*height + out_i)*width + out_j;
|
|
for( int j = 0; j < bsz; j++, rowbuf += vsz_a )
|
|
{
|
|
if( j + 4 <= bsz )
|
|
{
|
|
k = 0;
|
|
#if CV_SIMD128
|
|
for( ; k <= vsz - 4; k += 4 )
|
|
{
|
|
const float* inp = imgptr + j + k*inpPlaneSize;
|
|
v_float32x4 p0 = v_load(inp), p1 = v_load(inp + inpPlaneSize);
|
|
v_float32x4 p2 = v_load(inp + inpPlaneSize*2), p3 = v_load(inp + inpPlaneSize*3);
|
|
v_float32x4 r0, r1, r2, r3;
|
|
v_transpose4x4(p0, p1, p2, p3, r0, r1, r2, r3);
|
|
v_store(rowbuf + k, r0);
|
|
v_store(rowbuf + k + vsz_a, r1);
|
|
v_store(rowbuf + k + vsz_a*2, r2);
|
|
v_store(rowbuf + k + vsz_a*3, r3);
|
|
}
|
|
#endif
|
|
for( ; k < vsz; k++ )
|
|
{
|
|
const float* inp = imgptr + j + k*inpPlaneSize;
|
|
float v0 = inp[0], v1 = inp[1], v2 = inp[2], v3 = inp[3];
|
|
rowbuf[k] = v0;
|
|
rowbuf[k + vsz_a] = v1;
|
|
rowbuf[k + vsz_a*2] = v2;
|
|
rowbuf[k + vsz_a*3] = v3;
|
|
}
|
|
j += 3;
|
|
rowbuf += vsz_a*3;
|
|
}
|
|
else
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
rowbuf[k] = imgptr[j + k*inpPlaneSize];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
|
|
{
|
|
int delta = std::min(ofs1 - ofs, outW - out_j);
|
|
int out_j1 = out_j + delta;
|
|
|
|
int in_i = out_i * stride_h - pad_t;
|
|
int in_j = out_j * stride_w - pad_l;
|
|
const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
|
|
ofs += delta;
|
|
|
|
// do im2row for a part of input tensor
|
|
if( is1x1 )
|
|
{
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
rowbuf[k] = imgptr[k*inpPlaneSize];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
|
|
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
|
|
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
|
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
|
|
{
|
|
// this condition should be true for most of the tensor elements, i.e.
|
|
// most of the time the kernel aperture is inside the tensor X-Y plane.
|
|
if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
int k1 = ofstab[k];
|
|
float v0 = imgptr[k1];
|
|
float v1 = imgptr[k1 + stride_w];
|
|
rowbuf[k] = v0;
|
|
rowbuf[k+vsz_a] = v1;
|
|
}
|
|
out_j++;
|
|
rowbuf += vsz_a;
|
|
imgptr += stride_w;
|
|
in_j += stride_w;
|
|
}
|
|
else
|
|
{
|
|
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
|
|
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
|
|
|
|
// here some non-continuous sub-row of the row will not be
|
|
// filled from the tensor; we need to make sure that the uncovered
|
|
// elements are explicitly set to 0's. the easiest way is to
|
|
// set all the elements to 0's before the loop.
|
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
|
|
for( k = 0; k < ncn; k++ )
|
|
{
|
|
for( i = i0; i < i1; i++ )
|
|
{
|
|
for( j = j0; j < j1; j++ )
|
|
{
|
|
int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
|
|
rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( ofs = ofs0; ofs < ofs1; out_d += (out_i + 1) / outH, out_i = (out_i + 1) % outH, out_j = 0 )
|
|
{
|
|
int delta = std::min(ofs1 - ofs, outW - out_j);
|
|
int out_j1 = out_j + delta;
|
|
|
|
int in_d = out_d * stride_d - pad_d;
|
|
int in_i = out_i * stride_h - pad_t;
|
|
int in_j = out_j * stride_w - pad_l;
|
|
const float* imgptr = data_inp0 + (cn0*depth*height + in_d*height + in_i)*width + in_j;
|
|
ofs += delta;
|
|
|
|
int d0 = std::max(0, (-in_d + dilation_d - 1) / dilation_d);
|
|
int d1 = std::min(kernel_d, (depth - in_d + dilation_d - 1) / dilation_d);
|
|
|
|
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
|
|
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
|
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
|
|
{
|
|
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
|
|
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
|
|
|
|
// here some non-continuous sub-row of the row will not be
|
|
// filled from the tensor; we need to make sure that the uncovered
|
|
// elements are explicitly set to 0's. the easiest way is to
|
|
// set all the elements to 0's before the loop.
|
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
|
|
for( k = 0; k < ncn; k++ )
|
|
{
|
|
for ( d = d0; d < d1; d++)
|
|
{
|
|
for( i = i0; i < i1; i++ )
|
|
{
|
|
for( j = j0; j < j1; j++ )
|
|
{
|
|
int imgofs = k*(depth*width*height) + d*dilation_d*width*height + i*(dilation_h*width) + j*dilation_w;
|
|
rowbuf[(k*kernel_d*kernel_h + d*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// now compute dot product of the weights
|
|
// and im2row-transformed part of the tensor
|
|
#if CV_TRY_AVX512_SKX
|
|
/* AVX512 convolution requires an alignment of 16, and ROI is only there for larger vector sizes */
|
|
if(useAVX512)
|
|
opt_AVX512_SKX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX2
|
|
if(useAVX2)
|
|
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if(useAVX)
|
|
opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
for( int i = 0; i < outCn; i += 2 )
|
|
{
|
|
const float* wptr0 = wptr + i*wstep;
|
|
const float* wptr1 = wptr0 + wstep;
|
|
float* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
|
|
float* outptr1 = outptr0 + outPlaneSize;
|
|
float bias0 = biasptr[i], bias1 = biasptr[i+1];
|
|
float r0 = 1.f, r1 = 1.f;
|
|
|
|
if( i+1 >= outCn )
|
|
{
|
|
wptr1 = wptr0;
|
|
outptr1 = outptr0;
|
|
bias1 = bias0;
|
|
}
|
|
|
|
if( relu )
|
|
{
|
|
r0 = relu[i]; r1 = relu[i+1];
|
|
if( i+1 >= outCn )
|
|
r1 = r0;
|
|
}
|
|
|
|
int j = 0;
|
|
#if CV_SIMD128
|
|
v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32();
|
|
|
|
for( ; j <= bsz - 4; j += 4 )
|
|
{
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
v_float32x4 s0, s1;
|
|
|
|
if( cn0 == 0 )
|
|
{
|
|
s0 = v_setall_f32(bias0);
|
|
s1 = v_setall_f32(bias1);
|
|
}
|
|
else
|
|
{
|
|
s0 = v_load(outptr0 + j);
|
|
s1 = v_load(outptr1 + j);
|
|
}
|
|
|
|
v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(),
|
|
vs02 = v_setzero_f32(), vs03 = v_setzero_f32(),
|
|
vs10 = v_setzero_f32(), vs11 = v_setzero_f32(),
|
|
vs12 = v_setzero_f32(), vs13 = v_setzero_f32();
|
|
for( k = 0; k < vsz; k += 4, rptr += 4 )
|
|
{
|
|
v_float32x4 w0 = v_load_aligned(wptr0 + k);
|
|
v_float32x4 w1 = v_load_aligned(wptr1 + k);
|
|
v_float32x4 r0 = v_load_aligned(rptr);
|
|
v_float32x4 r1 = v_load_aligned(rptr + vsz_a);
|
|
v_float32x4 r2 = v_load_aligned(rptr + vsz_a*2);
|
|
v_float32x4 r3 = v_load_aligned(rptr + vsz_a*3);
|
|
|
|
vs00 = v_fma(w0, r0, vs00);
|
|
vs01 = v_fma(w0, r1, vs01);
|
|
vs02 = v_fma(w0, r2, vs02);
|
|
vs03 = v_fma(w0, r3, vs03);
|
|
|
|
vs10 = v_fma(w1, r0, vs10);
|
|
vs11 = v_fma(w1, r1, vs11);
|
|
vs12 = v_fma(w1, r2, vs12);
|
|
vs13 = v_fma(w1, r3, vs13);
|
|
}
|
|
s0 += v_reduce_sum4(vs00, vs01, vs02, vs03);
|
|
s1 += v_reduce_sum4(vs10, vs11, vs12, vs13);
|
|
if( relu )
|
|
{
|
|
s0 = v_select(s0 > z, s0, s0*vr0);
|
|
s1 = v_select(s1 > z, s1, s1*vr1);
|
|
}
|
|
|
|
v_store(outptr0 + j, s0);
|
|
v_store(outptr1 + j, s1);
|
|
}
|
|
#endif
|
|
for( ; j < bsz; j++ )
|
|
{
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
float s00, s10;
|
|
|
|
if( cn0 == 0 )
|
|
{
|
|
s00 = bias0;
|
|
s10 = bias1;
|
|
}
|
|
else
|
|
{
|
|
s00 = outptr0[j];
|
|
s10 = outptr1[j];
|
|
}
|
|
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
float r0 = rptr[k];
|
|
s00 += wptr0[k]*r0;
|
|
s10 += wptr1[k]*r0;
|
|
}
|
|
if( relu )
|
|
{
|
|
s00 = s00 > 0.f ? s00 : s00*r0;
|
|
s10 = s10 > 0.f ? s10 : s10*r1;
|
|
}
|
|
|
|
outptr0[j] = s00;
|
|
outptr1[j] = s10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( activ_ )
|
|
activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart,
|
|
(int)(stripeEnd - stripeStart),
|
|
outPlaneSize, startOutCn, startOutCn + outCn);
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
if (kernel_size.size() != 2)
|
|
{
|
|
// no OpenCL optimizations, see .supportedBacked()
|
|
return false;
|
|
}
|
|
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
bool use_half = (inps.depth() == CV_16S);
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
CV_Assert(inputs[i].u != outputs[0].u);
|
|
|
|
if (blobs.empty())
|
|
{
|
|
size_t n = inputs.size() - 1;
|
|
umat_blobs.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
inputs[i + 1].copyTo(umat_blobs[i]);
|
|
}
|
|
inputs.resize(1);
|
|
}
|
|
|
|
if (umat_blobs.empty())
|
|
{
|
|
size_t n = blobs.size();
|
|
umat_blobs.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
if (use_half)
|
|
convertFp16(blobs[i], umat_blobs[i]);
|
|
else
|
|
blobs[i].copyTo(umat_blobs[i]);
|
|
}
|
|
}
|
|
|
|
if (convolutionOp.empty() || blobs.empty())
|
|
{
|
|
OCL4DNNConvConfig config;
|
|
config.in_shape = shape(inputs[0]);
|
|
config.out_shape = shape(outputs[0]);
|
|
config.kernel = kernel;
|
|
config.pad = pad;
|
|
config.stride = stride;
|
|
config.dilation = dilation;
|
|
config.group = inputs[0].size[1] / umat_blobs[0].size[1];
|
|
config.bias_term = umat_blobs.size() == 2;
|
|
config.use_half = use_half;
|
|
|
|
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
|
|
}
|
|
|
|
int outCn = umat_blobs[0].size[0];
|
|
|
|
reluslope.clear();
|
|
if( activ )
|
|
{
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
{
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU;
|
|
}
|
|
|
|
Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
|
|
if( !activ_relu6.empty() )
|
|
{
|
|
reluslope.resize(2);
|
|
reluslope[0] = activ_relu6->minValue;
|
|
reluslope[1] = activ_relu6->maxValue;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU6;
|
|
}
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
if( !activ_chprelu.empty() )
|
|
{
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
const float* mdata = m.ptr<float>();
|
|
reluslope.resize(outCn+2);
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU;
|
|
}
|
|
}
|
|
|
|
if (fusedWeights)
|
|
{
|
|
if (use_half)
|
|
convertFp16(weightsMat, umat_blobs[0]);
|
|
else
|
|
weightsMat.copyTo(umat_blobs[0]);
|
|
fusedWeights = false;
|
|
}
|
|
if (fusedBias)
|
|
{
|
|
if ( umat_blobs.size() < 2 )
|
|
umat_blobs.resize(2);
|
|
if (use_half)
|
|
convertFp16(Mat(biasvec, true), umat_blobs[1]);
|
|
else
|
|
Mat(biasvec, true).copyTo(umat_blobs[1]);
|
|
convolutionOp->setBias(true);
|
|
fusedBias = false;
|
|
}
|
|
|
|
if ( newActiv )
|
|
{
|
|
if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU )
|
|
{
|
|
CV_Assert(!reluslope.empty());
|
|
convolutionOp->setActivReLU(true, reluslope[0]);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU)
|
|
{
|
|
CV_Assert(!reluslope.empty());
|
|
convolutionOp->setActivPReLU(true, reluslope);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER)
|
|
{
|
|
convolutionOp->setActivPower(true, power);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_TANH)
|
|
{
|
|
convolutionOp->setActivTanh(true);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU6)
|
|
{
|
|
convolutionOp->setActivReLU6(true, reluslope[0], reluslope[1]);
|
|
}
|
|
else
|
|
{
|
|
convolutionOp->setActivReLU(false, 0);
|
|
convolutionOp->setActivPReLU(false, reluslope);
|
|
convolutionOp->setActivPower(false, 1.f);
|
|
convolutionOp->setActivTanh(false);
|
|
convolutionOp->setActivReLU6(false, 0, 0);
|
|
}
|
|
newActiv = false;
|
|
}
|
|
|
|
UMat& inpMat = inputs[0];
|
|
UMat& outMat = outputs[0];
|
|
int batch_size = inpMat.size[0];
|
|
|
|
return convolutionOp->Forward(inpMat,
|
|
inputs.size() == 2 ? inputs[1] : UMat(),
|
|
umat_blobs[0],
|
|
umat_blobs.size() > 1 ? umat_blobs[1] : UMat(),
|
|
outMat,
|
|
batch_size);
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
#if CV_SSE3
|
|
uint32_t ftzMode = _MM_GET_FLUSH_ZERO_MODE();
|
|
uint32_t dazMode = _MM_GET_DENORMALS_ZERO_MODE();
|
|
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
|
|
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
|
|
#endif
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
int outCn = blobs.empty() ? inputs[1].size[0] : blobs[0].size[0];
|
|
// Need to align non-const blobs
|
|
if (blobs.empty())
|
|
{
|
|
Mat wm = inputs[1].reshape(1, outCn);
|
|
if (wm.data != weightsMat.data)
|
|
{
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
weightsMat = wm_buffer.colRange(0, wm.cols);
|
|
|
|
wm.copyTo((const Mat&)weightsMat);
|
|
if (inputs.size() > 2)
|
|
{
|
|
Mat biasMat = inputs[2].reshape(1, outCn);
|
|
biasMat.col(0).copyTo(biasvec);
|
|
}
|
|
biasvec.resize(outCn + 2, 0);
|
|
}
|
|
}
|
|
/*if (inputs[0].dims > 3) {
|
|
printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
|
|
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3],
|
|
kernel.width, kernel.height, pad.width, pad.height,
|
|
stride.width, stride.height, dilation.width, dilation.height);
|
|
}
|
|
else {
|
|
printf("conv %s: input (%d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
|
|
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2],
|
|
kernel.width, kernel.height, pad.width, pad.height,
|
|
stride.width, stride.height, dilation.width, dilation.height);
|
|
}*/
|
|
int inpGroupCn = blobs.empty() ? inputs[1].size[1] : blobs[0].size[1];
|
|
CV_Assert_N(inputs.size() >= (size_t)1, inputs[0].size[1] % inpGroupCn == 0,
|
|
outputs.size() == 1, inputs[0].data != outputs[0].data);
|
|
|
|
int ngroups = inputs[0].size[1] / inpGroupCn;
|
|
CV_Assert(outputs[0].size[1] % ngroups == 0);
|
|
|
|
reluslope.clear();
|
|
if( activ )
|
|
{
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
{
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
}
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
if( !activ_chprelu.empty() )
|
|
{
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
const float* mdata = m.ptr<float>();
|
|
reluslope.resize(outCn+2);
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_TENGINE
|
|
int inch = inputs[0].size[1]; // inch
|
|
int in_h = inputs[0].size[2]; // in_h
|
|
int in_w = inputs[0].size[3]; // in_w
|
|
|
|
int out_b = outputs[0].size[0]; // out batch size
|
|
int outch = outputs[0].size[1]; // outch
|
|
int out_h = outputs[0].size[2]; // out_h
|
|
int out_w = outputs[0].size[3]; // out_w
|
|
|
|
float *input_ = inputs[0].ptr<float>();
|
|
float *output_ = outputs[0].ptr<float>();
|
|
float *kernel_ = weightsMat.ptr<float>();
|
|
float *teg_bias = &biasvec[0];
|
|
|
|
bool tengine_ret = tengine_forward(input_, inch, ngroups, in_h, in_w,
|
|
output_, out_b, outch, out_h, out_w,
|
|
kernel_, kernel_size.size(), kernel.height, kernel.width,
|
|
teg_bias, stride.height, stride.width,
|
|
pad.height, pad.width, dilation.height, dilation.width,
|
|
weightsMat.step1(), padMode);
|
|
/* activation */
|
|
if((true == tengine_ret) && activ )
|
|
{
|
|
int out_cstep = out_h * out_w; // out_cstep
|
|
|
|
ActivationLayer* activ_ = activ.get();
|
|
activ_->forwardSlice(output_, output_, out_cstep, out_cstep, 0, outch);
|
|
}
|
|
if(false == tengine_ret)
|
|
#endif
|
|
{
|
|
int nstripes = std::max(getNumThreads(), 1);
|
|
|
|
ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
|
|
kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes);
|
|
}
|
|
#if CV_SSE3
|
|
_MM_SET_FLUSH_ZERO_MODE(ftzMode);
|
|
_MM_SET_DENORMALS_ZERO_MODE(dazMode);
|
|
#endif
|
|
}
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size() || inputs.size() == outputs.size() + blobs.size());
|
|
|
|
int64 flops = 0;
|
|
int karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies<size_t>());
|
|
for (int i = 0; i < outputs.size(); i++)
|
|
{
|
|
flops += total(outputs[i])*(CV_BIG_INT(2)*karea*inputs[i][1] + 1);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
class DeConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
Mat weightsMat, biasesMat;
|
|
UMat umat_weights;
|
|
UMat umat_biases;
|
|
|
|
DeConvolutionLayerImpl(const LayerParams& params) : BaseConvolutionLayerImpl(params) {}
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
|
|
{
|
|
int dims = inpShape.size();
|
|
int inpCn = inpShape[1];
|
|
int inpD = dims == 5 ? inpShape[2] : 1;
|
|
int inpH = inpShape[dims - 2];
|
|
int inpW = inpShape.back();
|
|
int outCn = outShape[1];
|
|
int ngroups = inpCn / blobs[0].size[0];
|
|
int outGroupCn = outCn / ngroups;
|
|
int ksize = outGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
return shape(ksize, inpD * inpH * inpW);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW or IODHW layout
|
|
const int group = numOutput / outGroupCn;
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
|
|
return group == 1;
|
|
}
|
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
{
|
|
if (kernel_size.size() == 3 && preferableTarget != DNN_TARGET_CPU) {
|
|
return false;
|
|
}
|
|
|
|
if (std::accumulate(adjust_pads.begin(), adjust_pads.end(), 0, std::plus<size_t>()) > 0)
|
|
{
|
|
if (padMode.empty())
|
|
{
|
|
if (preferableTarget != DNN_TARGET_CPU && group != 1)
|
|
{
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (adjust_pads[i] && pads_begin[i])
|
|
return false;
|
|
}
|
|
}
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (pads_end[i] < adjust_pads[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (kernel_size[i] < pads_begin[i] + 1 + adjust_pads[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else if (padMode == "VALID")
|
|
return false;
|
|
}
|
|
|
|
if (group != 1)
|
|
{
|
|
return preferableTarget == DNN_TARGET_CPU;
|
|
}
|
|
if (preferableTarget == DNN_TARGET_OPENCL || preferableTarget == DNN_TARGET_OPENCL_FP16)
|
|
return std::accumulate(dilations.begin(), dilations.end(), 1, std::multiplies<size_t>()) == 1;
|
|
return true;
|
|
}
|
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
|
#endif // HAVE_INF_ENGINE
|
|
{
|
|
return kernel_size.size() == 2 && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE);
|
|
}
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput);
|
|
CV_Assert(inputs.size() != 0);
|
|
|
|
int outCn = numOutput;
|
|
std::vector<int> outShape;
|
|
outShape.push_back(inputs[0][0]); // batch
|
|
outShape.push_back(outCn);
|
|
if (padMode.empty())
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]);
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] + adjust_pads[i]);
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + 1 + adjust_pads[i]);
|
|
}
|
|
else
|
|
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
|
|
|
|
CV_Assert(outCn % blobs[0].size[1] == 0);
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
|
|
int inpCn = inputs[0][1];
|
|
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
CV_Assert(blobs[0].size[0] == inpCn);
|
|
|
|
outputs.resize(1, outShape);
|
|
|
|
if (!is1x1())
|
|
internals.push_back(computeColRowShape(inputs[0], outputs[0]));
|
|
|
|
return false;
|
|
}
|
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
std::vector<int> inpShape;
|
|
std::vector<int> outShape;
|
|
for (int i = 2; i < inputs[0].dims; i++) {
|
|
inpShape.push_back(inputs[0].size[i]);
|
|
outShape.push_back(outputs[0].size[i]);
|
|
}
|
|
getConvPoolPaddings(outShape, kernel_size, strides, padMode, pads_begin, pads_end);
|
|
if (pads_begin.size() == 2) {
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (pads_begin[i] != pads_end[i])
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in deconvolution layer");
|
|
}
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
}
|
|
|
|
weightsMultipliers.assign(numOutput, 1.0);
|
|
if (weightsMat.empty())
|
|
{
|
|
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, numOutput)
|
|
: Mat::zeros(numOutput, 1, CV_32F);
|
|
}
|
|
}
|
|
|
|
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
|
{
|
|
Mat w = w_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(w_.at<float>(0))) : w_;
|
|
Mat b = b_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(b_.at<float>(0))) : b_;
|
|
|
|
CV_Assert_N(!weightsMat.empty(),
|
|
w.empty() || numOutput == w.total(),
|
|
b.empty() || numOutput == b.total());
|
|
|
|
if (!w.empty())
|
|
{
|
|
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
|
weightsMat = weightsMat.reshape(1, numOutput);
|
|
for (int i = 0; i < numOutput; ++i)
|
|
{
|
|
double wi = w.at<float>(i);
|
|
weightsMultipliers[i] *= wi;
|
|
cv::multiply(weightsMat.row(i), weightsMultipliers[i], weightsMat.row(i));
|
|
biasesMat.at<float>(i) *= wi;
|
|
}
|
|
weightsMat = weightsMat.reshape(1, weightsMat.total() / blobs[0].size[0]);
|
|
}
|
|
|
|
if (!b.empty())
|
|
{
|
|
cv::add(biasesMat, b.reshape(1, numOutput), biasesMat);
|
|
}
|
|
}
|
|
|
|
class MatMulInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
|
|
{
|
|
a_ = &a;
|
|
b_ = &b;
|
|
c_ = &c;
|
|
nstripes_ = nstripes;
|
|
useAVX = checkHardwareSupport(CPU_AVX);
|
|
useAVX2 = checkHardwareSupport(CPU_AVX2);
|
|
useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
|
|
}
|
|
|
|
void operator()(const Range& range_) const CV_OVERRIDE
|
|
{
|
|
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
|
|
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
|
|
int mmax = a_->rows;
|
|
int nmax = range.end - range.start;
|
|
int kmax = a_->cols;
|
|
int m, n, k;
|
|
const float* aptr = a_->ptr<float>();
|
|
const float* bptr = b_->ptr<float>() + range.start;
|
|
float* cptr = c_->ptr<float>() + range.start;
|
|
size_t astep = a_->step1();
|
|
size_t bstep = b_->step1();
|
|
size_t cstep = c_->step1();
|
|
|
|
#if CV_TRY_AVX512_SKX
|
|
if( useAVX512 )
|
|
opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX2
|
|
if( useAVX2 )
|
|
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if( useAVX )
|
|
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
for( m = 0; m < mmax; m += 2 )
|
|
{
|
|
float* dst0 = cptr + cstep*m;
|
|
float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
|
|
const float* aptr0 = aptr + astep*m;
|
|
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
|
|
|
|
for( n = 0; n < nmax; n++ )
|
|
{
|
|
dst0[n] = 0.f;
|
|
dst1[n] = 0.f;
|
|
}
|
|
|
|
for( k = 0; k < kmax; k += 4 )
|
|
{
|
|
float alpha00 = aptr0[k];
|
|
float alpha01 = aptr1[k];
|
|
float alpha10 = 0.f, alpha11 = 0.f;
|
|
float alpha20 = 0.f, alpha21 = 0.f;
|
|
float alpha30 = 0.f, alpha31 = 0.f;
|
|
const float* bptr0 = bptr + k*bstep;
|
|
const float* bptr1 = bptr0;
|
|
const float* bptr2 = bptr0;
|
|
const float* bptr3 = bptr0;
|
|
|
|
if( k+1 < kmax )
|
|
{
|
|
alpha10 = aptr0[k+1];
|
|
alpha11 = aptr1[k+1];
|
|
bptr1 = bptr0 + bstep;
|
|
if( k+2 < kmax )
|
|
{
|
|
alpha20 = aptr0[k+2];
|
|
alpha21 = aptr1[k+2];
|
|
bptr2 = bptr1 + bstep;
|
|
if( k+3 < kmax )
|
|
{
|
|
alpha30 = aptr0[k+3];
|
|
alpha31 = aptr1[k+3];
|
|
bptr3 = bptr2 + bstep;
|
|
}
|
|
}
|
|
}
|
|
n = 0;
|
|
|
|
#if CV_SIMD128
|
|
v_float32x4 a00 = v_setall_f32(alpha00);
|
|
v_float32x4 a01 = v_setall_f32(alpha01);
|
|
v_float32x4 a10 = v_setall_f32(alpha10);
|
|
v_float32x4 a11 = v_setall_f32(alpha11);
|
|
v_float32x4 a20 = v_setall_f32(alpha20);
|
|
v_float32x4 a21 = v_setall_f32(alpha21);
|
|
v_float32x4 a30 = v_setall_f32(alpha30);
|
|
v_float32x4 a31 = v_setall_f32(alpha31);
|
|
|
|
for( ; n <= nmax - 4; n += 4 )
|
|
{
|
|
v_float32x4 d0 = v_load(dst0 + n);
|
|
v_float32x4 d1 = v_load(dst1 + n);
|
|
v_float32x4 b0 = v_load(bptr0 + n);
|
|
v_float32x4 b1 = v_load(bptr1 + n);
|
|
v_float32x4 b2 = v_load(bptr2 + n);
|
|
v_float32x4 b3 = v_load(bptr3 + n);
|
|
// TODO try to improve pipeline width
|
|
d0 = v_fma(b0, a00, d0);
|
|
d1 = v_fma(b0, a01, d1);
|
|
d0 = v_fma(b1, a10, d0);
|
|
d1 = v_fma(b1, a11, d1);
|
|
d0 = v_fma(b2, a20, d0);
|
|
d1 = v_fma(b2, a21, d1);
|
|
d0 = v_fma(b3, a30, d0);
|
|
d1 = v_fma(b3, a31, d1);
|
|
v_store(dst0 + n, d0);
|
|
v_store(dst1 + n, d1);
|
|
}
|
|
#endif
|
|
|
|
for( ; n < nmax; n++ )
|
|
{
|
|
float b0 = bptr0[n];
|
|
float b1 = bptr1[n];
|
|
float b2 = bptr2[n];
|
|
float b3 = bptr3[n];
|
|
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
|
|
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
|
|
dst0[n] = d0;
|
|
dst1[n] = d1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mat *a_, *b_;
|
|
Mat* c_;
|
|
int nstripes_;
|
|
bool useAVX;
|
|
bool useAVX2;
|
|
bool useAVX512;
|
|
};
|
|
|
|
class Col2ImInvoker : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
const float* data_col;
|
|
const float* biasvec;
|
|
int channels, height, width;
|
|
int kernel_h, kernel_w;
|
|
int pad_h, pad_w;
|
|
int stride_h, stride_w;
|
|
float* data_im;
|
|
int height_col, width_col;
|
|
int nstripes;
|
|
bool is1x1;
|
|
|
|
Col2ImInvoker()
|
|
: data_col(0), biasvec(0), channels(0), height(0), width(0),
|
|
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
|
|
height_col(0), width_col(0), nstripes(0), is1x1(0)
|
|
{}
|
|
|
|
static void run(const float* data_col,
|
|
int channels, int height, int width,
|
|
int kernel_h, int kernel_w,
|
|
int pad_h, int pad_w,
|
|
int stride_h, int stride_w,
|
|
int height_col, int width_col,
|
|
float* data_im,
|
|
const float* biasvec,
|
|
bool is1x1)
|
|
{
|
|
const int nstripes = getNumThreads();
|
|
|
|
Col2ImInvoker t;
|
|
t.data_col = data_col;
|
|
t.data_im = data_im;
|
|
t.channels = channels; t.height = height; t.width = width;
|
|
t.kernel_h = kernel_h; t.kernel_w = kernel_w;
|
|
t.pad_h = pad_h; t.pad_w = pad_w;
|
|
t.stride_h = stride_h; t.stride_w = stride_w;
|
|
t.height_col = height_col;
|
|
t.width_col = width_col;
|
|
t.nstripes = nstripes;
|
|
t.is1x1 = is1x1;
|
|
t.biasvec = biasvec;
|
|
|
|
parallel_for_(Range(0, nstripes), t, nstripes);
|
|
}
|
|
|
|
virtual void operator ()(const Range &r) const CV_OVERRIDE
|
|
{
|
|
const float* data_col_ = data_col;
|
|
float* data_im_ = data_im;
|
|
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
|
|
int coeff_w = (1 - stride_w * height_col * width_col);
|
|
size_t total = (size_t)channels * height * width;
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
size_t startIndex = r.start*stripeSize;
|
|
size_t endIndex = std::min(r.end*stripeSize, total);
|
|
int w = (int)(startIndex % width + pad_w);
|
|
int h = (int)((startIndex / width) % height + pad_h);
|
|
int c = (int)(startIndex / (width * height));
|
|
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
int h_col_end = std::min(h / stride_h + 1, height_col);
|
|
int plane_size_col = height_col * width_col;
|
|
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
bool is1x1_ = is1x1;
|
|
const float* biasvec_ = biasvec;
|
|
|
|
for (size_t index = startIndex; index < endIndex; index++)
|
|
{
|
|
// compute the start and end of the output
|
|
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
|
|
int w_col_end = std::min(w / stride_w + 1, width_col);
|
|
float val;
|
|
|
|
if( is1x1_ )
|
|
val = data_im_[index];
|
|
else
|
|
{
|
|
val = 0.f;
|
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
|
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
|
|
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
|
|
}
|
|
}
|
|
}
|
|
data_im_[index] = val + biasvec_[c];
|
|
|
|
offset += plane_size_col;
|
|
if( ++w >= width + pad_w )
|
|
{
|
|
w = (int)((index + 1)% width + pad_w);
|
|
h = (int)(((index + 1) / width) % height + pad_h);
|
|
c = (int)((index + 1) / (width * height));
|
|
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
h_col_end = std::min(h / stride_h + 1, height_col);
|
|
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
std::vector<UMat> internals;
|
|
|
|
if (inputs_.depth() == CV_16S)
|
|
return false;
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
internals_.getUMatVector(internals);
|
|
|
|
int outCn = numOutput;
|
|
int inpCn = inputs[0].size[1];
|
|
|
|
if (is1x1())
|
|
return false;
|
|
|
|
if (umat_weights.empty())
|
|
{
|
|
if (fusedWeights)
|
|
weightsMat.copyTo(umat_weights);
|
|
else
|
|
transpose(blobs[0].reshape(1, inpCn), umat_weights);
|
|
|
|
if (fusedBias)
|
|
biasesMat.copyTo(umat_biases);
|
|
else
|
|
{
|
|
if (hasBias())
|
|
blobs[1].reshape(1, outCn).copyTo(umat_biases);
|
|
else
|
|
umat_biases = UMat::zeros(outCn, 1, CV_32F);
|
|
}
|
|
}
|
|
|
|
String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type()));
|
|
buildopt += format("-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d ",
|
|
pad.height, pad.width, kernel.height, kernel.width, stride.height, stride.width);
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
{
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
int inpGroupCn = inpCn / ngroups;
|
|
int outGroupCn = blobs[0].size[1];
|
|
const UMat& inp = inputs[ii];
|
|
UMat& out = outputs[ii];
|
|
int numImg = inp.size[0];
|
|
int inpH = inp.size[2], inpW = inp.size[3];
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
MatShape inpshape = shape(numImg*inpCn, inpH*inpW);
|
|
MatShape outshape = shape(numImg*outCn, outH*outW);
|
|
UMat convBlob = inputs[ii].reshape(1, inpshape.size(), &inpshape[0]);
|
|
UMat decnBlob = out.reshape(1, outshape.size(), &outshape[0]);
|
|
int rows = internals[0].rows / ngroups;
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
{
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
UMat colMat = internals[0].rowRange(_Range(g * rows, rows));
|
|
UMat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
UMat wghtMat = umat_weights.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
gemm(wghtMat, convMat, 1, noArray(), 0, colMat, 0);
|
|
}
|
|
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
int total = outGroupCn * decnBlob.cols;
|
|
int index = 0;
|
|
int height_col = inpH;
|
|
int width_col = inpW;
|
|
int coeff_h = (1 - stride.height * kernel.width * height_col) * width_col;
|
|
int coeff_w = (1 - stride.width * height_col * width_col);
|
|
|
|
ocl::Kernel k("col2im", ocl::dnn::col2im_oclsrc, buildopt);
|
|
k.set(index++, total);
|
|
k.set(index++, ocl::KernelArg::PtrReadOnly(internals[0]));
|
|
k.set(index++, (int)(g * rows * internals[0].cols));
|
|
k.set(index++, outGroupCn);
|
|
k.set(index++, outH);
|
|
k.set(index++, outW);
|
|
k.set(index++, height_col);
|
|
k.set(index++, width_col);
|
|
k.set(index++, coeff_h);
|
|
k.set(index++, coeff_w);
|
|
k.set(index++, ocl::KernelArg::PtrReadOnly(umat_biases));
|
|
k.set(index++, (int)(g * outGroupCn * umat_biases.cols));
|
|
k.set(index++, ocl::KernelArg::PtrWriteOnly(decnBlob));
|
|
k.set(index++, (int)((g + n * ngroups) * outGroupCn * decnBlob.cols));
|
|
|
|
size_t global[] = { (size_t)total };
|
|
bool ret = k.run(1, global, NULL, false);
|
|
if (!ret)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr));
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs, internals;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
int outCn = numOutput;
|
|
int inpCn = inputs[0].size[1];
|
|
bool is1x1flag = is1x1();
|
|
int nstripes = getNumThreads();
|
|
|
|
if( weightsMat.empty() )
|
|
{
|
|
transpose(blobs[0].reshape(1, inpCn), weightsMat);
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
|
|
}
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
{
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
int inpGroupCn = inpCn / ngroups;
|
|
int outGroupCn = blobs[0].size[1];
|
|
const Mat& inp = inputs[ii];
|
|
Mat& out = outputs[ii];
|
|
int numImg = inp.size[0];
|
|
int inpH = inp.size[2], inpW = inp.size[3];
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
Mat convBlob = inputs[ii].reshape(1, numImg*inpCn);
|
|
Mat decnBlob = out.reshape(1, numImg*outCn);
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
{
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
|
|
Mat &colMat = is1x1flag ? dstMat : internals[0];
|
|
|
|
Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
|
|
|
|
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
|
|
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
|
|
parallel_for_(Range(0, nstripes), mminvoker, nstripes);
|
|
|
|
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
|
|
kernel.height, kernel.width, pad.height, pad.width,
|
|
stride.height, stride.width, inpH, inpW, dstMat.ptr<float>(),
|
|
curBiasMat.ptr<float>(), is1x1flag);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
int inW, inH, inC, inN;
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
const int outGroupCn = blobs[0].size[1];
|
|
const int group = numOutput / outGroupCn;
|
|
const int inpGroupCn = blobs[0].size[0] / group;
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
auto weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
Halide::Func dilated_input("dilated_input");
|
|
dilated_input(x, y, c, n) = 0.0f;
|
|
Halide::RDom r1(0, inW, 0, inH);
|
|
dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
|
|
inputBuffer(r1.x, r1.y, c, n);
|
|
dilated_input.compute_root();
|
|
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
|
|
0, (inW - 1) * stride.width + 1,
|
|
0, (inH - 1) * stride.height + 1,
|
|
0, inC, 0, inN);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
Halide::Expr kx = x + pad.width - r.x;
|
|
Halide::Expr ky = y + pad.height - r.y;
|
|
Halide::Expr kInC = r.z;
|
|
Halide::Expr kOutC = c;
|
|
for (int i = 1; i < group; ++i)
|
|
{
|
|
kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z);
|
|
kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i);
|
|
}
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) *
|
|
weights(r.x, r.y, kOutC, kInC));
|
|
if (hasBias())
|
|
{
|
|
auto bias = wrapToHalideBuffer(blobs[1], {numOutput});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::Layout layout = blobs[0].dims == 5? InferenceEngine::Layout::NCDHW :
|
|
InferenceEngine::Layout::OIHW;
|
|
|
|
auto ieWeights = wrapToInfEngineBlob(blobs[0], layout);
|
|
if (fusedWeights)
|
|
{
|
|
ieWeights = InferenceEngine::make_shared_blob<float>({
|
|
InferenceEngine::Precision::FP32,
|
|
ieWeights->getTensorDesc().getDims(), layout
|
|
});
|
|
ieWeights->allocate();
|
|
|
|
int inpCn = blobs[0].size[0];
|
|
Mat newWeights = infEngineBlobToMat(ieWeights).reshape(1, inpCn);
|
|
transpose(weightsMat, newWeights);
|
|
}
|
|
|
|
const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW or OIDHW layout
|
|
const int group = numOutput / outGroupCn;
|
|
|
|
InferenceEngine::Builder::DeconvolutionLayer ieLayer(name);
|
|
|
|
ieLayer.setKernel(kernel_size);
|
|
ieLayer.setStrides(strides);
|
|
ieLayer.setDilation(dilations);
|
|
ieLayer.setPaddingsBegin(pads_begin);
|
|
|
|
if (padMode.empty())
|
|
{
|
|
std::vector<size_t> paddings_end;
|
|
for (int i = 0; i < pads_end.size(); i++) {
|
|
paddings_end.push_back(pads_end[i] - adjust_pads[i]);
|
|
}
|
|
ieLayer.setPaddingsEnd(paddings_end);
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
std::vector<size_t> paddings_end;
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
paddings_end.push_back(kernel_size[i] - pads_begin[i] - 1 - adjust_pads[i]);
|
|
}
|
|
ieLayer.setPaddingsEnd(paddings_end);
|
|
}
|
|
ieLayer.setGroup((size_t)group);
|
|
ieLayer.setOutDepth((size_t)numOutput);
|
|
|
|
InferenceEngine::Builder::Layer l = ieLayer;
|
|
addConstantData("weights", ieWeights, l);
|
|
if (hasBias())
|
|
addConstantData("biases", wrapToInfEngineBlob(biasesMat, {(size_t)numOutput}, InferenceEngine::Layout::C), l);
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(l));
|
|
}
|
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
const int outGroupCn = blobs[0].size[1];
|
|
const int group = numOutput / outGroupCn;
|
|
CV_Assert(group == 1);
|
|
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
std::vector<size_t> kernel_shape = getShape<size_t>(blobs[0]);
|
|
auto ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, blobs[0].data);
|
|
|
|
if (fusedWeights)
|
|
{
|
|
Mat newWeights;
|
|
transpose(weightsMat, newWeights);
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, newWeights.data);
|
|
}
|
|
std::vector<size_t> paddings_end;
|
|
if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
paddings_end.push_back(kernel_size[i] - pads_begin[i] - 1 - adjust_pads[i]);
|
|
}
|
|
adjust_pads = std::vector<size_t>(pads_begin.size(), 0);
|
|
} else {
|
|
paddings_end = pads_end;
|
|
}
|
|
ngraph::op::PadType pad_type = padMode == "VALID" ? ngraph::op::PadType::VALID : ngraph::op::PadType::EXPLICIT;
|
|
|
|
auto deconv = std::make_shared<ngraph::op::v1::ConvolutionBackpropData>(
|
|
ieInpNode,
|
|
ieWeights,
|
|
ngraph::Strides(strides),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(paddings_end.begin(), paddings_end.end())),
|
|
ngraph::Strides(dilations),
|
|
pad_type,
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(adjust_pads.begin(), adjust_pads.end())));
|
|
|
|
if (hasBias() || fusedBias)
|
|
{
|
|
std::vector<size_t> shape(deconv->get_shape().size(), 1);
|
|
shape[1] = numOutput;
|
|
auto bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), blobs[1].data);
|
|
auto deconv_bias = std::make_shared<ngraph::op::v1::Add>(deconv, bias, ngraph::op::AutoBroadcastType::NUMPY);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv_bias));
|
|
}
|
|
|
|
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
float flops = 0;
|
|
int outChannels = blobs[0].size[0];
|
|
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += CV_BIG_INT(2)*outChannels*karea*total(inputs[i]);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
Ptr<ConvolutionLayerImpl> l(new ConvolutionLayerImpl(params));
|
|
return l;
|
|
}
|
|
|
|
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
return Ptr<BaseConvolutionLayer>(new DeConvolutionLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|