mirror of
https://github.com/opencv/opencv.git
synced 2024-12-02 16:00:17 +08:00
ca08101f7e
- parse idl - replase option parser with argument parser
70 lines
2.5 KiB
Python
Executable File
70 lines
2.5 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import argparse
|
|
import sft
|
|
|
|
import sys, os, os.path, glob, math, cv2
|
|
from datetime import datetime
|
|
import numpy
|
|
|
|
def call_parser(f, a):
|
|
return eval( "sft.parse_" + f + "('" + a + "')")
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description = 'Plot ROC curve using Caltech mathod of per image detection performance estimation.')
|
|
|
|
# positional
|
|
parser.add_argument("cascade", help = "Path to the tested detector.")
|
|
parser.add_argument("input", help = "Image sequence pattern.")
|
|
parser.add_argument("annotations", help = "Path to the annotations.")
|
|
|
|
# optional
|
|
parser.add_argument("-m", "--min_scale", dest = "min_scale", type = float, metavar= "fl", help = "Minimum scale to be tested.", default = 0.4)
|
|
parser.add_argument("-M", "--max_scale", dest = "max_scale", type = float, metavar= "fl", help = "Maximum scale to be tested.", default = 5.0)
|
|
parser.add_argument("-o", "--output", dest = "output", type = str, metavar= "path", help = "Path to store resultiong image.", default = "./roc.png")
|
|
parser.add_argument("-n", "--nscales", dest = "nscales", type = int, metavar= "n", help = "Prefered count of scales from min to max.", default = 55)
|
|
|
|
# required
|
|
parser.add_argument("-f", "--anttn-format", dest = "anttn_format", choices = ['inria', 'caltech', "idl"], help = "Annotation file for test sequence.", required = True)
|
|
|
|
args = parser.parse_args()
|
|
|
|
samples = call_parser(args.anttn_format, args.annotations)
|
|
|
|
# where we use nms cv::SCascade::DOLLAR == 2
|
|
cascade = cv2.SCascade(args.min_scale, args.max_scale, args.nscales, 2)
|
|
xml = cv2.FileStorage(args.cascade, 0)
|
|
dom = xml.getFirstTopLevelNode()
|
|
assert cascade.load(dom)
|
|
|
|
frame = 0
|
|
pattern = args.input
|
|
camera = cv2.VideoCapture(args.input)
|
|
while True:
|
|
ret, img = camera.read()
|
|
if not ret:
|
|
break;
|
|
|
|
name = pattern % (frame,)
|
|
qq = pattern.format(frame)
|
|
_, tail = os.path.split(name)
|
|
|
|
boxes = samples[tail]
|
|
if boxes is not None:
|
|
sft.draw_rects(img, boxes, (255, 0, 0), lambda x, y : y)
|
|
|
|
frame = frame + 1
|
|
|
|
# sample = samples[]
|
|
|
|
|
|
|
|
rects, confs = cascade.detect(img, rois = None)
|
|
|
|
# # draw results
|
|
if rects is not None:
|
|
sft.draw_rects(img, rects[0], (0, 255, 0))
|
|
|
|
cv2.imshow("result", img);
|
|
if (cv2.waitKey (5) != -1):
|
|
break; |