mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
234 lines
6.3 KiB
C++
234 lines
6.3 KiB
C++
/*
|
|
* video_homography.cpp
|
|
*
|
|
* Created on: Oct 18, 2010
|
|
* Author: erublee
|
|
*/
|
|
|
|
#include "opencv2/calib3d/calib3d.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include "opencv2/features2d/features2d.hpp"
|
|
#include <iostream>
|
|
#include <list>
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
static void help(char **av)
|
|
{
|
|
cout << "\nThis program demonstrated the use of features2d with the Fast corner detector and brief descriptors\n"
|
|
<< "to track planar objects by computing their homography from the key (training) image to the query (test) image\n\n" << endl;
|
|
cout << "usage: " << av[0] << " <video device number>\n" << endl;
|
|
cout << "The following keys do stuff:" << endl;
|
|
cout << " t : grabs a reference frame to match against" << endl;
|
|
cout << " l : makes the reference frame new every frame" << endl;
|
|
cout << " q or escape: quit" << endl;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
void drawMatchesRelative(const vector<KeyPoint>& train, const vector<KeyPoint>& query,
|
|
std::vector<cv::DMatch>& matches, Mat& img, const vector<unsigned char>& mask = vector<
|
|
unsigned char> ())
|
|
{
|
|
for (int i = 0; i < (int)matches.size(); i++)
|
|
{
|
|
if (mask.empty() || mask[i])
|
|
{
|
|
Point2f pt_new = query[matches[i].queryIdx].pt;
|
|
Point2f pt_old = train[matches[i].trainIdx].pt;
|
|
|
|
cv::line(img, pt_new, pt_old, Scalar(125, 255, 125), 1);
|
|
cv::circle(img, pt_new, 2, Scalar(255, 0, 125), 1);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
//Takes a descriptor and turns it into an xy point
|
|
void keypoints2points(const vector<KeyPoint>& in, vector<Point2f>& out)
|
|
{
|
|
out.clear();
|
|
out.reserve(in.size());
|
|
for (size_t i = 0; i < in.size(); ++i)
|
|
{
|
|
out.push_back(in[i].pt);
|
|
}
|
|
}
|
|
|
|
//Takes an xy point and appends that to a keypoint structure
|
|
void points2keypoints(const vector<Point2f>& in, vector<KeyPoint>& out)
|
|
{
|
|
out.clear();
|
|
out.reserve(in.size());
|
|
for (size_t i = 0; i < in.size(); ++i)
|
|
{
|
|
out.push_back(KeyPoint(in[i], 1));
|
|
}
|
|
}
|
|
|
|
//Uses computed homography H to warp original input points to new planar position
|
|
void warpKeypoints(const Mat& H, const vector<KeyPoint>& in, vector<KeyPoint>& out)
|
|
{
|
|
vector<Point2f> pts;
|
|
keypoints2points(in, pts);
|
|
vector<Point2f> pts_w(pts.size());
|
|
Mat m_pts_w(pts_w);
|
|
perspectiveTransform(Mat(pts), m_pts_w, H);
|
|
points2keypoints(pts_w, out);
|
|
}
|
|
|
|
//Converts matching indices to xy points
|
|
void matches2points(const vector<KeyPoint>& train, const vector<KeyPoint>& query,
|
|
const std::vector<cv::DMatch>& matches, std::vector<cv::Point2f>& pts_train,
|
|
std::vector<Point2f>& pts_query)
|
|
{
|
|
|
|
pts_train.clear();
|
|
pts_query.clear();
|
|
pts_train.reserve(matches.size());
|
|
pts_query.reserve(matches.size());
|
|
|
|
size_t i = 0;
|
|
|
|
for (; i < matches.size(); i++)
|
|
{
|
|
|
|
const DMatch & dmatch = matches[i];
|
|
|
|
pts_query.push_back(query[dmatch.queryIdx].pt);
|
|
pts_train.push_back(train[dmatch.trainIdx].pt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void resetH(Mat&H)
|
|
{
|
|
H = Mat::eye(3, 3, CV_32FC1);
|
|
}
|
|
}
|
|
|
|
int main(int ac, char ** av)
|
|
{
|
|
|
|
if (ac != 2)
|
|
{
|
|
help(av);
|
|
return 1;
|
|
}
|
|
|
|
BriefDescriptorExtractor brief(32);
|
|
|
|
VideoCapture capture;
|
|
capture.open(atoi(av[1]));
|
|
if (!capture.isOpened())
|
|
{
|
|
help(av);
|
|
cout << "capture device " << atoi(av[1]) << " failed to open!" << endl;
|
|
return 1;
|
|
}
|
|
|
|
cout << "following keys do stuff:" << endl;
|
|
cout << "t : grabs a reference frame to match against" << endl;
|
|
cout << "l : makes the reference frame new every frame" << endl;
|
|
cout << "q or escape: quit" << endl;
|
|
|
|
Mat frame;
|
|
|
|
vector<DMatch> matches;
|
|
|
|
BFMatcher desc_matcher(NORM_HAMMING);
|
|
|
|
vector<Point2f> train_pts, query_pts;
|
|
vector<KeyPoint> train_kpts, query_kpts;
|
|
vector<unsigned char> match_mask;
|
|
|
|
Mat gray;
|
|
|
|
bool ref_live = true;
|
|
|
|
Mat train_desc, query_desc;
|
|
const int DESIRED_FTRS = 500;
|
|
GridAdaptedFeatureDetector detector(new FastFeatureDetector(10, true), DESIRED_FTRS, 4, 4);
|
|
|
|
Mat H_prev = Mat::eye(3, 3, CV_32FC1);
|
|
for (;;)
|
|
{
|
|
capture >> frame;
|
|
if (frame.empty())
|
|
break;
|
|
|
|
cvtColor(frame, gray, CV_RGB2GRAY);
|
|
|
|
detector.detect(gray, query_kpts); //Find interest points
|
|
|
|
brief.compute(gray, query_kpts, query_desc); //Compute brief descriptors at each keypoint location
|
|
|
|
if (!train_kpts.empty())
|
|
{
|
|
|
|
vector<KeyPoint> test_kpts;
|
|
warpKeypoints(H_prev.inv(), query_kpts, test_kpts);
|
|
|
|
Mat mask = windowedMatchingMask(test_kpts, train_kpts, 25, 25);
|
|
desc_matcher.match(query_desc, train_desc, matches, mask);
|
|
drawKeypoints(frame, test_kpts, frame, Scalar(255, 0, 0), DrawMatchesFlags::DRAW_OVER_OUTIMG);
|
|
|
|
matches2points(train_kpts, query_kpts, matches, train_pts, query_pts);
|
|
|
|
if (matches.size() > 5)
|
|
{
|
|
Mat H = findHomography(train_pts, query_pts, RANSAC, 4, match_mask);
|
|
if (countNonZero(Mat(match_mask)) > 15)
|
|
{
|
|
H_prev = H;
|
|
}
|
|
else
|
|
resetH(H_prev);
|
|
drawMatchesRelative(train_kpts, query_kpts, matches, frame, match_mask);
|
|
}
|
|
else
|
|
resetH(H_prev);
|
|
|
|
}
|
|
else
|
|
{
|
|
H_prev = Mat::eye(3, 3, CV_32FC1);
|
|
Mat out;
|
|
drawKeypoints(gray, query_kpts, out);
|
|
frame = out;
|
|
}
|
|
|
|
imshow("frame", frame);
|
|
|
|
if (ref_live)
|
|
{
|
|
train_kpts = query_kpts;
|
|
query_desc.copyTo(train_desc);
|
|
}
|
|
char key = (char)waitKey(2);
|
|
switch (key)
|
|
{
|
|
case 'l':
|
|
ref_live = true;
|
|
resetH(H_prev);
|
|
break;
|
|
case 't':
|
|
ref_live = false;
|
|
train_kpts = query_kpts;
|
|
query_desc.copyTo(train_desc);
|
|
resetH(H_prev);
|
|
break;
|
|
case 27:
|
|
case 'q':
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|