opencv/modules/dnn/src/layers/fully_connected_layer.cpp
Liubov Batanina ad63d24dba
Merge pull request #18096 from l-bat:update_onnx_importer
* Added ReduceSum to ONNX importer

* Fix comments

* Fix Mul
2020-08-14 16:49:42 +00:00

613 lines
22 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
#ifdef HAVE_DNN_NGRAPH
#include "../ie_ngraph.hpp"
#endif
namespace cv
{
namespace dnn
{
class FullyConnectedLayerImpl CV_FINAL : public InnerProductLayer
{
public:
enum { VEC_ALIGN = 8 };
#ifdef HAVE_OPENCL
Ptr<OCL4DNNInnerProduct<float> > innerProductOp;
std::vector<UMat> umat_blobs;
std::vector<UMat> half_blobs;
#endif
FullyConnectedLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
bias = params.get<bool>("bias_term", true);
axis = params.get<int>("axis", 1);
if (!blobs.empty())
{
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
int numOutput = params.get<int>("num_output");
int innerSize = (int)blobs[0].total() / numOutput;
CV_Assert(blobs[0].dims >= 2 && (size_t)(innerSize * numOutput) == blobs[0].total());
CV_Assert(!bias || (blobs.size() == 2 && (size_t)numOutput == blobs[1].total()));
weightsMat = blobs[0] = blobs[0].reshape(1, numOutput);
int vecsize = weightsMat.cols;
if (vecsize % VEC_ALIGN != 0)
{
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
Mat weightsBuf(weightsMat.rows, vecsize_aligned, weightsMat.type());
Mat wpadding = weightsBuf.colRange(vecsize, vecsize_aligned);
wpadding.setTo(Scalar::all(0.));
weightsMat = weightsBuf.colRange(0, vecsize);
blobs[0].copyTo(weightsMat);
}
if (bias)
biasMat = blobs[1] = blobs[1].reshape(1, 1);
else
biasMat = Mat::zeros(1, numOutput, weightsMat.type());
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &) const CV_OVERRIDE
{
int numOutput, cAxis;
if (blobs.empty())
{
CV_CheckEQ(inputs.size(), (size_t)2, "");
numOutput = inputs[1].back();
cAxis = inputs[0].size() - 1;
int dims = inputs[0].size();
CV_CheckEQ(inputs[1].size(), (size_t)dims, "");
CV_CheckGE(dims, 2, "");
for (int i = 0; i < dims - 2; i++)
CV_CheckEQ(inputs[0][i], inputs[1][i], "");
CV_CheckEQ(inputs[0].back(), inputs[1][dims - 2], "");
}
else
{
CV_CheckEQ(inputs.size(), (size_t)1, "");
CV_CheckEQ(blobs[0].dims, 2, "");
numOutput = blobs[0].size[0];
CV_Assert(!bias || (size_t)numOutput == blobs[1].total());
cAxis = clamp(axis, inputs[0]);
}
MatShape outShape(cAxis + 1);
for (int i = 0; i < cAxis; ++i)
outShape[i] = inputs[0][i];
outShape.back() = numOutput;
outputs.resize(1, outShape);
return false;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1) ||
(((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && !blobs.empty()) ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && axis == 1);
}
virtual bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
if (activ.empty() || layer.empty())
{
activ = layer;
return !activ.empty();
}
else
return false;
}
class FullyConnected : public ParallelLoopBody
{
public:
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false), useAVX512(false) {}
static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
Mat& dstMat, const ActivationLayer* activ, int nstripes)
{
CV_Assert( srcMat.dims == 2 && srcMat.cols == weights.cols &&
dstMat.rows == srcMat.rows && dstMat.cols == weights.rows &&
srcMat.type() == weights.type() && weights.type() == dstMat.type() &&
srcMat.type() == CV_32F &&
(biasMat.empty() || (biasMat.type() == srcMat.type() &&
biasMat.isContinuous() && (int)biasMat.total() == dstMat.cols)) );
FullyConnected p;
p.srcMat = &srcMat;
p.weights = &weights;
p.biasMat = &biasMat;
p.dstMat = &dstMat;
p.nstripes = nstripes;
p.activ = activ;
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
int valign = FullyConnectedLayerImpl::VEC_ALIGN;
int nsamples = srcMat->rows;
int nw0 = weights->rows;
int k, vecsize = srcMat->cols;
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
size_t total = (size_t)nsamples*nw0;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = r.end == nstripes ? total : std::min(r.end*stripeSize, total);
size_t wstep = weights->step1();
AutoBuffer<float> srcbuf(vecsize_aligned + valign);
float* sptr = alignPtr(srcbuf.data(), (int)(valign*sizeof(float)));
for( k = vecsize; k < vecsize_aligned; k++ )
sptr[k] = 0.f;
for( size_t ofs = stripeStart; ofs < stripeEnd; )
{
int sampleIdx = (int)(ofs / nw0);
int delta = (int)(ofs - (size_t)sampleIdx*nw0);
const float* sptr_ = srcMat->ptr<float>(sampleIdx);
const float* wptr = weights->ptr<float>(delta);
float* dptr = dstMat->ptr<float>(sampleIdx) + delta;
const float* biasptr = biasMat->ptr<float>() + delta;
int nw = std::min(nw0 - delta, (int)(stripeEnd - ofs));
memcpy(sptr, sptr_, vecsize*sizeof(sptr[0]));
#if CV_TRY_AVX512_SKX
if( useAVX512 )
opt_AVX512_SKX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
#if CV_TRY_AVX
if( useAVX )
opt_AVX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
{
int i = 0;
#if CV_SIMD128
for( ; i <= nw - 4; i += 4, wptr += 4*wstep )
{
v_float32x4 vs0 = v_setall_f32(0.f), vs1 = v_setall_f32(0.f);
v_float32x4 vs2 = v_setall_f32(0.f), vs3 = v_setall_f32(0.f);
for( k = 0; k < vecsize; k += 4 )
{
v_float32x4 v = v_load_aligned(sptr + k);
vs0 += v*v_load_aligned(wptr + k);
vs1 += v*v_load_aligned(wptr + wstep + k);
vs2 += v*v_load_aligned(wptr + wstep*2 + k);
vs3 += v*v_load_aligned(wptr + wstep*3 + k);
}
v_float32x4 s = v_reduce_sum4(vs0, vs1, vs2, vs3);
s += v_load(biasptr + i);
v_store(dptr + i, s);
}
#endif
for( ; i < nw; i++, wptr += wstep )
{
float s0=biasptr[i];
for( k = 0; k < vecsize; k++ )
{
float v = sptr[k];
s0 += v*wptr[k];
}
dptr[i] = s0;
}
}
if(activ)
activ->forwardSlice(dptr, dptr, 1, 1, delta, delta + nw);
ofs += nw;
}
}
const Mat *srcMat, *weights, *biasMat;
const ActivationLayer* activ;
Mat* dstMat;
int nstripes;
bool useAVX;
bool useAVX2;
bool useAVX512;
};
#ifdef HAVE_OPENCL
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
{
innerProductOp.release();
umat_blobs.clear();
half_blobs.clear();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (inputs.size() == 2)
{
int dims = outputs[0].dims;
int m = inputs[0].size[dims - 2];
int n = inputs[0].size[dims - 1];
int k = inputs[1].size[dims - 1];
int rows = inputs[0].total() / (m * n);
MatShape sh_A = shape(rows, m * n);
MatShape sh_B = shape(rows, n * k);
MatShape sh_C = shape(rows, m * k);
UMat inp = inputs[0].reshape(1, sh_A.size(), &sh_A[0]);
UMat weight = inputs[1].reshape(1, sh_B.size(), &sh_B[0]);
UMat out = outputs[0].reshape(1, sh_C.size(), &sh_C[0]);
UMat A, B, C, A_fp32, B_fp32, C_fp32;
for (int i = 0; i < rows; ++i)
{
A = inp.row(i).reshape(1, m);
B = weight.row(i).reshape(1, n);
C = out.row(i).reshape(1, m);
if (use_half)
{
convertFp16(A, A_fp32);
convertFp16(B, B_fp32);
convertFp16(C, C_fp32);
}
else
{
A_fp32 = A;
B_fp32 = B;
C_fp32 = C;
}
cv::gemm(A_fp32, B_fp32, 1, noArray(), 0, C_fp32);
if (use_half)
{
convertFp16(A_fp32, A);
convertFp16(B_fp32, B);
convertFp16(C_fp32, C);
}
}
return true;
}
int axisCan = clamp(axis, inputs[0].dims);
int numOutput = blobs[0].size[0];
int innerSize = blobs[0].size[1];
int outerSize = total(shape(inputs[0]), 0, axisCan);
bool ret = true;
if (innerProductOp.empty())
{
size_t n = blobs.size();
umat_blobs.resize(n);
for (int i = 0; i < n; i++) blobs[i].copyTo(umat_blobs[i]);
OCL4DNNInnerProductConfig config;
config.num_output = numOutput;
config.bias_term = bias;
config.M = outerSize;
config.K = innerSize;
config.use_half = use_half;
if (use_half)
{
half_blobs.resize(umat_blobs.size());
for (int i = 0; i < umat_blobs.size(); i++)
{
if (!umat_blobs[i].empty())
convertFp16(umat_blobs[i], half_blobs[i]);
}
}
innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
}
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape inshape, outshape;
inshape = shape(outerSize, innerSize);
outshape = shape(outerSize, numOutput);
UMat srcMat, dstMat;
srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
if (!innerProductOp->Forward(srcMat, (use_half) ? half_blobs[0] : umat_blobs[0],
(bias) ? (use_half ? half_blobs[1] : umat_blobs[1]) : UMat(),
dstMat))
{
ret = false;
break;
}
if (!use_half && bias && (outerSize > 1))
{
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
}
}
if (ret) return true;
UMat& weights = umat_blobs[0];
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape inshape, outshape;
inshape = shape(outerSize, innerSize);
outshape = shape(outerSize, numOutput);
UMat srcMat, dstMat, srcMat_fp32, dstMat_fp32;
srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
if (use_half)
{
convertFp16(srcMat, srcMat_fp32);
convertFp16(dstMat, dstMat_fp32);
}
else
{
srcMat_fp32 = srcMat;
dstMat_fp32 = dstMat;
}
cv::gemm(srcMat_fp32, weights, 1, noArray(), 0, dstMat_fp32, GEMM_2_T);
if (bias)
{
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat_fp32, 1, dstMat_fp32, 0);
}
if (use_half)
{
convertFp16(srcMat_fp32, srcMat);
convertFp16(dstMat_fp32, dstMat);
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> input, output;
inputs_arr.getMatVector(input);
outputs_arr.getMatVector(output);
if (!blobs.empty())
{
int axisCan = clamp(axis, input[0].dims);
int outerSize = input[0].total(0, axisCan);
for (size_t i = 0; i < input.size(); i++)
{
Mat srcMat = input[i].reshape(1, outerSize);
Mat dstMat = output[i].reshape(1, outerSize);
const int nstripes = getNumThreads();
FullyConnected::run(srcMat, weightsMat, biasMat, dstMat, activ.get(), nstripes);
}
}
else
{
float* inpData = input[0].ptr<float>();
float* weightData = input[1].ptr<float>();
float* outData = output[0].ptr<float>();
int dims = output[0].dims;
int numSlice = output[0].total() / output[0].total(dims - 2);
int m = input[0].size[dims - 2];
int n = input[0].size[dims - 1];
int k = input[1].size[dims - 1];
for (int i = 0; i < numSlice; i++)
{
Mat inpSlice(m, n, CV_32F, inpData);
Mat weightSlice(n, k, CV_32F, weightData);
Mat outSlice(m, k, CV_32F, outData);
outSlice = inpSlice * weightSlice;
inpData += inpSlice.total();
weightData += weightSlice.total();
outData += outSlice.total();
}
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
int inW, inH, inC, inN, outC = blobs[0].size[0];
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
auto weights = wrapToHalideBuffer(blobs[0], {inW, inH, inC, outC});
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::RDom r(0, inW, 0, inH, 0, inC);
Halide::Expr topExpr = sum(inputBuffer(r.x, r.y, r.z, n) *
weights(r.x, r.y, r.z, c));
if (bias)
{
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outC});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
InferenceEngine::Builder::FullyConnectedLayer ieLayer(name);
const int outNum = blobs[0].size[0];
ieLayer.setOutputNum(outNum);
InferenceEngine::Builder::Layer l = ieLayer;
addConstantData("weights", wrapToInfEngineBlob(blobs[0], {(size_t)blobs[0].size[0], (size_t)blobs[0].size[1], 1, 1}, InferenceEngine::Layout::OIHW), l);
if (bias)
addConstantData("biases", wrapToInfEngineBlob(blobs[1], {(size_t)outNum}, InferenceEngine::Layout::C), l);
return Ptr<BackendNode>(new InfEngineBackendNode(l));
}
#endif // HAVE_DNN_IE_NN_BUILDER_2019
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::shared_ptr<ngraph::Node> matmul;
if (nodes.size() == 2)
{
auto& inp2 = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
matmul = std::make_shared<ngraph::op::MatMul>(ieInpNode, inp2, false, false);
}
else
{
std::vector<int64_t> data = {(int64_t)ieInpNode->get_shape()[0], (int64_t)blobs[0].size[1]};
auto new_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, data.data());
auto inp = std::make_shared<ngraph::op::v1::Reshape>(ieInpNode, new_shape, true);
std::vector<size_t> weight_shape{(size_t)blobs[0].size[0], (size_t)blobs[0].size[1]};
auto ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, weight_shape, blobs[0].data);
matmul = std::make_shared<ngraph::op::MatMul>(inp, ieWeights, false, true);
}
if (bias) {
auto bias_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
ngraph::Shape{(size_t)blobs[1].size[1]}, blobs[1].data);
matmul = std::make_shared<ngraph::op::v1::Add>(matmul, bias_node, ngraph::op::AutoBroadcastType::NUMPY);
}
return Ptr<BackendNode>(new InfEngineNgraphNode(matmul));
}
#endif // HAVE_DNN_NGRAPH
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
int innerSize = blobs[0].size[1];
for(int i = 0; i < outputs.size(); i++)
{
flops += CV_BIG_INT(3)*innerSize*total(outputs[i]);
}
return flops;
}
bool bias;
Mat weightsMat, biasMat;
Ptr<ActivationLayer> activ;
};
Ptr<InnerProductLayer> InnerProductLayer::create(const LayerParams& params)
{
return Ptr<InnerProductLayer>(new FullyConnectedLayerImpl(params));
}
}
}