mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
167 lines
4.4 KiB
C
167 lines
4.4 KiB
C
/* slanst.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
doublereal slanst_(char *norm, integer *n, real *d__, real *e)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
real ret_val, r__1, r__2, r__3, r__4, r__5;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
real sum, scale;
|
|
extern logical lsame_(char *, char *);
|
|
real anorm;
|
|
extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *,
|
|
real *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLANST returns the value of the one norm, or the Frobenius norm, or */
|
|
/* the infinity norm, or the element of largest absolute value of a */
|
|
/* real symmetric tridiagonal matrix A. */
|
|
|
|
/* Description */
|
|
/* =========== */
|
|
|
|
/* SLANST returns the value */
|
|
|
|
/* SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
|
|
/* ( */
|
|
/* ( norm1(A), NORM = '1', 'O' or 'o' */
|
|
/* ( */
|
|
/* ( normI(A), NORM = 'I' or 'i' */
|
|
/* ( */
|
|
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
|
|
|
|
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
|
|
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
|
|
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
|
|
/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* NORM (input) CHARACTER*1 */
|
|
/* Specifies the value to be returned in SLANST as described */
|
|
/* above. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix A. N >= 0. When N = 0, SLANST is */
|
|
/* set to zero. */
|
|
|
|
/* D (input) REAL array, dimension (N) */
|
|
/* The diagonal elements of A. */
|
|
|
|
/* E (input) REAL array, dimension (N-1) */
|
|
/* The (n-1) sub-diagonal or super-diagonal elements of A. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
--e;
|
|
--d__;
|
|
|
|
/* Function Body */
|
|
if (*n <= 0) {
|
|
anorm = 0.f;
|
|
} else if (lsame_(norm, "M")) {
|
|
|
|
/* Find max(abs(A(i,j))). */
|
|
|
|
anorm = (r__1 = d__[*n], dabs(r__1));
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
/* Computing MAX */
|
|
r__2 = anorm, r__3 = (r__1 = d__[i__], dabs(r__1));
|
|
anorm = dmax(r__2,r__3);
|
|
/* Computing MAX */
|
|
r__2 = anorm, r__3 = (r__1 = e[i__], dabs(r__1));
|
|
anorm = dmax(r__2,r__3);
|
|
/* L10: */
|
|
}
|
|
} else if (lsame_(norm, "O") || *(unsigned char *)
|
|
norm == '1' || lsame_(norm, "I")) {
|
|
|
|
/* Find norm1(A). */
|
|
|
|
if (*n == 1) {
|
|
anorm = dabs(d__[1]);
|
|
} else {
|
|
/* Computing MAX */
|
|
r__3 = dabs(d__[1]) + dabs(e[1]), r__4 = (r__1 = e[*n - 1], dabs(
|
|
r__1)) + (r__2 = d__[*n], dabs(r__2));
|
|
anorm = dmax(r__3,r__4);
|
|
i__1 = *n - 1;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
/* Computing MAX */
|
|
r__4 = anorm, r__5 = (r__1 = d__[i__], dabs(r__1)) + (r__2 =
|
|
e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3));
|
|
anorm = dmax(r__4,r__5);
|
|
/* L20: */
|
|
}
|
|
}
|
|
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
|
|
|
|
/* Find normF(A). */
|
|
|
|
scale = 0.f;
|
|
sum = 1.f;
|
|
if (*n > 1) {
|
|
i__1 = *n - 1;
|
|
slassq_(&i__1, &e[1], &c__1, &scale, &sum);
|
|
sum *= 2;
|
|
}
|
|
slassq_(n, &d__[1], &c__1, &scale, &sum);
|
|
anorm = scale * sqrt(sum);
|
|
}
|
|
|
|
ret_val = anorm;
|
|
return ret_val;
|
|
|
|
/* End of SLANST */
|
|
|
|
} /* slanst_ */
|