mirror of
https://github.com/opencv/opencv.git
synced 2025-01-05 01:07:59 +08:00
394 lines
12 KiB
C++
394 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
class CV_FindContourTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
enum { NUM_IMG = 4 };
|
|
|
|
CV_FindContourTest();
|
|
~CV_FindContourTest();
|
|
void clear();
|
|
|
|
protected:
|
|
int read_params( CvFileStorage* fs );
|
|
int prepare_test_case( int test_case_idx );
|
|
int validate_test_results( int test_case_idx );
|
|
void run_func();
|
|
|
|
int min_blob_size, max_blob_size;
|
|
int blob_count, max_log_blob_count;
|
|
int retr_mode, approx_method;
|
|
|
|
int min_log_img_size, max_log_img_size;
|
|
CvSize img_size;
|
|
int count, count2;
|
|
|
|
IplImage* img[NUM_IMG];
|
|
CvMemStorage* storage;
|
|
CvSeq *contours, *contours2, *chain;
|
|
};
|
|
|
|
|
|
CV_FindContourTest::CV_FindContourTest()
|
|
{
|
|
int i;
|
|
|
|
test_case_count = 300;
|
|
min_blob_size = 1;
|
|
max_blob_size = 50;
|
|
max_log_blob_count = 10;
|
|
|
|
min_log_img_size = 3;
|
|
max_log_img_size = 10;
|
|
|
|
for( i = 0; i < NUM_IMG; i++ )
|
|
img[i] = 0;
|
|
|
|
storage = 0;
|
|
}
|
|
|
|
|
|
CV_FindContourTest::~CV_FindContourTest()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
|
|
void CV_FindContourTest::clear()
|
|
{
|
|
int i;
|
|
|
|
cvtest::BaseTest::clear();
|
|
|
|
for( i = 0; i < NUM_IMG; i++ )
|
|
cvReleaseImage( &img[i] );
|
|
|
|
cvReleaseMemStorage( &storage );
|
|
}
|
|
|
|
|
|
int CV_FindContourTest::read_params( CvFileStorage* fs )
|
|
{
|
|
int t;
|
|
int code = cvtest::BaseTest::read_params( fs );
|
|
|
|
if( code < 0 )
|
|
return code;
|
|
|
|
min_blob_size = cvReadInt( find_param( fs, "min_blob_size" ), min_blob_size );
|
|
max_blob_size = cvReadInt( find_param( fs, "max_blob_size" ), max_blob_size );
|
|
max_log_blob_count = cvReadInt( find_param( fs, "max_log_blob_count" ), max_log_blob_count );
|
|
min_log_img_size = cvReadInt( find_param( fs, "min_log_img_size" ), min_log_img_size );
|
|
max_log_img_size = cvReadInt( find_param( fs, "max_log_img_size" ), max_log_img_size );
|
|
|
|
min_blob_size = cvtest::clipInt( min_blob_size, 1, 100 );
|
|
max_blob_size = cvtest::clipInt( max_blob_size, 1, 100 );
|
|
|
|
if( min_blob_size > max_blob_size )
|
|
CV_SWAP( min_blob_size, max_blob_size, t );
|
|
|
|
max_log_blob_count = cvtest::clipInt( max_log_blob_count, 1, 10 );
|
|
|
|
min_log_img_size = cvtest::clipInt( min_log_img_size, 1, 10 );
|
|
max_log_img_size = cvtest::clipInt( max_log_img_size, 1, 10 );
|
|
|
|
if( min_log_img_size > max_log_img_size )
|
|
CV_SWAP( min_log_img_size, max_log_img_size, t );
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
cvTsGenerateBlobImage( IplImage* img, int min_blob_size, int max_blob_size,
|
|
int blob_count, int min_brightness, int max_brightness,
|
|
RNG& rng )
|
|
{
|
|
int i;
|
|
CvSize size;
|
|
|
|
assert( img->depth == IPL_DEPTH_8U && img->nChannels == 1 );
|
|
|
|
cvZero( img );
|
|
|
|
// keep the border clear
|
|
cvSetImageROI( img, cvRect(1,1,img->width-2,img->height-2) );
|
|
size = cvGetSize( img );
|
|
|
|
for( i = 0; i < blob_count; i++ )
|
|
{
|
|
CvPoint center;
|
|
CvSize axes;
|
|
int angle = cvtest::randInt(rng) % 180;
|
|
int brightness = cvtest::randInt(rng) %
|
|
(max_brightness - min_brightness) + min_brightness;
|
|
center.x = cvtest::randInt(rng) % size.width;
|
|
center.y = cvtest::randInt(rng) % size.height;
|
|
|
|
axes.width = (cvtest::randInt(rng) %
|
|
(max_blob_size - min_blob_size) + min_blob_size + 1)/2;
|
|
axes.height = (cvtest::randInt(rng) %
|
|
(max_blob_size - min_blob_size) + min_blob_size + 1)/2;
|
|
|
|
cvEllipse( img, center, axes, angle, 0, 360, cvScalar(brightness), CV_FILLED );
|
|
}
|
|
|
|
cvResetImageROI( img );
|
|
}
|
|
|
|
|
|
static void
|
|
cvTsMarkContours( IplImage* img, int val )
|
|
{
|
|
int i, j;
|
|
int step = img->widthStep;
|
|
|
|
assert( img->depth == IPL_DEPTH_8U && img->nChannels == 1 && (val&1) != 0);
|
|
|
|
for( i = 1; i < img->height - 1; i++ )
|
|
for( j = 1; j < img->width - 1; j++ )
|
|
{
|
|
uchar* t = (uchar*)(img->imageData + img->widthStep*i + j);
|
|
if( *t == 1 && (t[-step] == 0 || t[-1] == 0 || t[1] == 0 || t[step] == 0))
|
|
*t = (uchar)val;
|
|
}
|
|
|
|
cvThreshold( img, img, val - 2, val, CV_THRESH_BINARY );
|
|
}
|
|
|
|
|
|
int CV_FindContourTest::prepare_test_case( int test_case_idx )
|
|
{
|
|
RNG& rng = ts->get_rng();
|
|
const int min_brightness = 0, max_brightness = 2;
|
|
int i, code = cvtest::BaseTest::prepare_test_case( test_case_idx );
|
|
|
|
if( code < 0 )
|
|
return code;
|
|
|
|
clear();
|
|
|
|
blob_count = cvRound(exp(cvtest::randReal(rng)*max_log_blob_count*CV_LOG2));
|
|
|
|
img_size.width = cvRound(exp((cvtest::randReal(rng)*
|
|
(max_log_img_size - min_log_img_size) + min_log_img_size)*CV_LOG2));
|
|
img_size.height = cvRound(exp((cvtest::randReal(rng)*
|
|
(max_log_img_size - min_log_img_size) + min_log_img_size)*CV_LOG2));
|
|
|
|
approx_method = cvtest::randInt( rng ) % 4 + 1;
|
|
retr_mode = cvtest::randInt( rng ) % 4;
|
|
|
|
storage = cvCreateMemStorage( 1 << 10 );
|
|
|
|
for( i = 0; i < NUM_IMG; i++ )
|
|
img[i] = cvCreateImage( img_size, 8, 1 );
|
|
|
|
cvTsGenerateBlobImage( img[0], min_blob_size, max_blob_size,
|
|
blob_count, min_brightness, max_brightness, rng );
|
|
|
|
cvCopy( img[0], img[1] );
|
|
cvCopy( img[0], img[2] );
|
|
|
|
cvTsMarkContours( img[1], 255 );
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
void CV_FindContourTest::run_func()
|
|
{
|
|
contours = contours2 = chain = 0;
|
|
count = cvFindContours( img[2], storage, &contours, sizeof(CvContour), retr_mode, approx_method );
|
|
|
|
cvZero( img[3] );
|
|
|
|
if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
|
cvDrawContours( img[3], contours, cvScalar(255), cvScalar(255), INT_MAX, -1 );
|
|
|
|
cvCopy( img[0], img[2] );
|
|
|
|
count2 = cvFindContours( img[2], storage, &chain, sizeof(CvChain), retr_mode, CV_CHAIN_CODE );
|
|
|
|
if( chain )
|
|
contours2 = cvApproxChains( chain, storage, approx_method, 0, 0, 1 );
|
|
|
|
cvZero( img[2] );
|
|
|
|
if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
|
cvDrawContours( img[2], contours2, cvScalar(255), cvScalar(255), INT_MAX );
|
|
}
|
|
|
|
|
|
// the whole testing is done here, run_func() is not utilized in this test
|
|
int CV_FindContourTest::validate_test_results( int /*test_case_idx*/ )
|
|
{
|
|
int i, code = cvtest::TS::OK;
|
|
|
|
cvCmpS( img[0], 0, img[0], CV_CMP_GT );
|
|
|
|
if( count != count2 )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "The number of contours retrieved with different "
|
|
"approximation methods is not the same\n"
|
|
"(%d contour(s) for method %d vs %d contour(s) for method %d)\n",
|
|
count, approx_method, count2, CV_CHAIN_CODE );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
}
|
|
|
|
if( retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
|
{
|
|
Mat _img[4];
|
|
for( int i = 0; i < 4; i++ )
|
|
_img[i] = cvarrToMat(img[i]);
|
|
|
|
code = cvtest::cmpEps2(ts, _img[0], _img[3], 0, true, "Comparing original image with the map of filled contours" );
|
|
|
|
if( code < 0 )
|
|
goto _exit_;
|
|
|
|
code = cvtest::cmpEps2( ts, _img[1], _img[2], 0, true,
|
|
"Comparing contour outline vs manually produced edge map" );
|
|
|
|
if( code < 0 )
|
|
goto _exit_;
|
|
}
|
|
|
|
if( contours )
|
|
{
|
|
CvTreeNodeIterator iterator1;
|
|
CvTreeNodeIterator iterator2;
|
|
int count3;
|
|
|
|
for( i = 0; i < 2; i++ )
|
|
{
|
|
CvTreeNodeIterator iterator;
|
|
cvInitTreeNodeIterator( &iterator, i == 0 ? contours : contours2, INT_MAX );
|
|
|
|
for( count3 = 0; cvNextTreeNode( &iterator ) != 0; count3++ )
|
|
;
|
|
|
|
if( count3 != count )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"The returned number of retrieved contours (using the approx_method = %d) does not match\n"
|
|
"to the actual number of contours in the tree/list (returned %d, actual %d)\n",
|
|
i == 0 ? approx_method : 0, count, count3 );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
}
|
|
|
|
cvInitTreeNodeIterator( &iterator1, contours, INT_MAX );
|
|
cvInitTreeNodeIterator( &iterator2, contours2, INT_MAX );
|
|
|
|
for( count3 = 0; count3 < count; count3++ )
|
|
{
|
|
CvSeq* seq1 = (CvSeq*)cvNextTreeNode( &iterator1 );
|
|
CvSeq* seq2 = (CvSeq*)cvNextTreeNode( &iterator2 );
|
|
CvSeqReader reader1;
|
|
CvSeqReader reader2;
|
|
|
|
if( !seq1 || !seq2 )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"There are NULL pointers in the original contour tree or the "
|
|
"tree produced by cvApproxChains\n" );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
|
|
cvStartReadSeq( seq1, &reader1 );
|
|
cvStartReadSeq( seq2, &reader2 );
|
|
|
|
if( seq1->total != seq2->total )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"The original contour #%d has %d points, while the corresponding contour has %d point\n",
|
|
count3, seq1->total, seq2->total );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
|
|
for( i = 0; i < seq1->total; i++ )
|
|
{
|
|
CvPoint pt1;
|
|
CvPoint pt2;
|
|
|
|
CV_READ_SEQ_ELEM( pt1, reader1 );
|
|
CV_READ_SEQ_ELEM( pt2, reader2 );
|
|
|
|
if( pt1.x != pt2.x || pt1.y != pt2.y )
|
|
{
|
|
ts->printf( cvtest::TS::LOG,
|
|
"The point #%d in the contour #%d is different from the corresponding point "
|
|
"in the approximated chain ((%d,%d) vs (%d,%d)", count3, i, pt1.x, pt1.y, pt2.x, pt2.y );
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
goto _exit_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
_exit_:
|
|
if( code < 0 )
|
|
{
|
|
#if 0
|
|
cvNamedWindow( "test", 0 );
|
|
cvShowImage( "test", img[0] );
|
|
cvWaitKey();
|
|
#endif
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
|
|
TEST(Imgproc_FindContours, accuracy) { CV_FindContourTest test; test.safe_run(); }
|
|
|
|
/* End of file. */
|