mirror of
https://github.com/opencv/opencv.git
synced 2025-01-14 00:48:09 +08:00
135 lines
4.6 KiB
C++
135 lines
4.6 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Jin Ma, jin@multicorewareinc.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::ocl;
|
|
|
|
KalmanFilter::KalmanFilter()
|
|
{
|
|
|
|
}
|
|
|
|
KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type)
|
|
{
|
|
init(dynamParams, measureParams, controlParams, type);
|
|
}
|
|
|
|
void KalmanFilter::init(int DP, int MP, int CP, int type)
|
|
{
|
|
CV_Assert( DP > 0 && MP > 0 );
|
|
CV_Assert( type == CV_32F || type == CV_64F );
|
|
CP = cv::max(CP, 0);
|
|
|
|
statePre.create(DP, 1, type);
|
|
statePre.setTo(Scalar::all(0));
|
|
|
|
statePost.create(DP, 1, type);
|
|
statePost.setTo(Scalar::all(0));
|
|
|
|
transitionMatrix.create(DP, DP, type);
|
|
setIdentity(transitionMatrix, 1);
|
|
|
|
processNoiseCov.create(DP, DP, type);
|
|
setIdentity(processNoiseCov, 1);
|
|
|
|
measurementNoiseCov.create(MP, MP, type);
|
|
setIdentity(measurementNoiseCov, 1);
|
|
|
|
measurementMatrix.create(MP, DP, type);
|
|
measurementMatrix.setTo(Scalar::all(0));
|
|
|
|
errorCovPre.create(DP, DP, type);
|
|
errorCovPre.setTo(Scalar::all(0));
|
|
|
|
errorCovPost.create(DP, DP, type);
|
|
errorCovPost.setTo(Scalar::all(0));
|
|
|
|
gain.create(DP, MP, type);
|
|
gain.setTo(Scalar::all(0));
|
|
|
|
if( CP > 0 )
|
|
{
|
|
controlMatrix.create(DP, CP, type);
|
|
controlMatrix.setTo(Scalar::all(0));
|
|
}
|
|
else
|
|
controlMatrix.release();
|
|
|
|
temp1.create(DP, DP, type);
|
|
temp2.create(MP, DP, type);
|
|
temp3.create(MP, MP, type);
|
|
temp4.create(MP, DP, type);
|
|
temp5.create(MP, 1, type);
|
|
}
|
|
|
|
CV_EXPORTS const oclMat& KalmanFilter::predict(const oclMat& control)
|
|
{
|
|
gemm(transitionMatrix, statePost, 1, oclMat(), 0, statePre);
|
|
oclMat temp;
|
|
|
|
if(control.data)
|
|
gemm(controlMatrix, control, 1, statePre, 1, statePre);
|
|
gemm(transitionMatrix, errorCovPost, 1, oclMat(), 0, temp1);
|
|
gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T);
|
|
statePre.copyTo(statePost);
|
|
return statePre;
|
|
}
|
|
|
|
CV_EXPORTS const oclMat& KalmanFilter::correct(const oclMat& measurement)
|
|
{
|
|
CV_Assert(measurement.empty() == false);
|
|
gemm(measurementMatrix, errorCovPre, 1, oclMat(), 0, temp2);
|
|
gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T);
|
|
Mat temp;
|
|
solve(Mat(temp3), Mat(temp2), temp, DECOMP_SVD);
|
|
temp4.upload(temp);
|
|
gain = temp4.t();
|
|
gemm(measurementMatrix, statePre, -1, measurement, 1, temp5);
|
|
gemm(gain, temp5, 1, statePre, 1, statePost);
|
|
gemm(gain, temp2, -1, errorCovPre, 1, errorCovPost);
|
|
return statePost;
|
|
}
|