mirror of
https://github.com/opencv/opencv.git
synced 2024-12-03 16:35:09 +08:00
187 lines
5.6 KiB
C++
187 lines
5.6 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|
|
#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
/**
|
|
Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
|
|
*/
|
|
template <typename T>
|
|
void addValue(int pos, float val, float* vals, T* point, T* points, int n)
|
|
{
|
|
vals[pos] = val;
|
|
for (int i=0; i<n; ++i) {
|
|
points[pos*n+i] = point[i];
|
|
}
|
|
|
|
// bubble down
|
|
int j=pos;
|
|
while (j>0 && vals[j]<vals[j-1]) {
|
|
swap(vals[j],vals[j-1]);
|
|
for (int i=0; i<n; ++i) {
|
|
swap(points[j*n+i],points[(j-1)*n+i]);
|
|
}
|
|
--j;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Simplex downhill optimization function.
|
|
Preconditions: points is a 2D mattrix of size (n+1) x n
|
|
func is the cost function taking n an array of n params and returning float
|
|
vals is the cost function in the n+1 simplex points, if NULL it will be computed
|
|
|
|
Postcondition: returns optimum value and points[0..n] are the optimum parameters
|
|
*/
|
|
template <typename T, typename F>
|
|
float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
|
|
{
|
|
const int MAX_ITERATIONS = 10;
|
|
|
|
assert(n>0);
|
|
|
|
T* p_o = new T[n];
|
|
T* p_r = new T[n];
|
|
T* p_e = new T[n];
|
|
|
|
int alpha = 1;
|
|
|
|
int iterations = 0;
|
|
|
|
bool ownVals = false;
|
|
if (vals == NULL) {
|
|
ownVals = true;
|
|
vals = new float[n+1];
|
|
for (int i=0; i<n+1; ++i) {
|
|
float val = func(points+i*n);
|
|
addValue(i, val, vals, points+i*n, points, n);
|
|
}
|
|
}
|
|
int nn = n*n;
|
|
|
|
while (true) {
|
|
|
|
if (iterations++ > MAX_ITERATIONS) break;
|
|
|
|
// compute average of simplex points (except the highest point)
|
|
for (int j=0; j<n; ++j) {
|
|
p_o[j] = 0;
|
|
for (int i=0; i<n; ++i) {
|
|
p_o[i] += points[j*n+i];
|
|
}
|
|
}
|
|
for (int i=0; i<n; ++i) {
|
|
p_o[i] /= n;
|
|
}
|
|
|
|
bool converged = true;
|
|
for (int i=0; i<n; ++i) {
|
|
if (p_o[i] != points[nn+i]) {
|
|
converged = false;
|
|
}
|
|
}
|
|
if (converged) break;
|
|
|
|
// trying a reflection
|
|
for (int i=0; i<n; ++i) {
|
|
p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
|
|
}
|
|
float val_r = func(p_r);
|
|
|
|
if ((val_r>=vals[0])&&(val_r<vals[n])) {
|
|
// reflection between second highest and lowest
|
|
// add it to the simplex
|
|
Logger::info("Choosing reflection\n");
|
|
addValue(n, val_r,vals, p_r, points, n);
|
|
continue;
|
|
}
|
|
|
|
if (val_r<vals[0]) {
|
|
// value is smaller than smalest in simplex
|
|
|
|
// expand some more to see if it drops further
|
|
for (int i=0; i<n; ++i) {
|
|
p_e[i] = 2*p_r[i]-p_o[i];
|
|
}
|
|
float val_e = func(p_e);
|
|
|
|
if (val_e<val_r) {
|
|
Logger::info("Choosing reflection and expansion\n");
|
|
addValue(n, val_e,vals,p_e,points,n);
|
|
}
|
|
else {
|
|
Logger::info("Choosing reflection\n");
|
|
addValue(n, val_r,vals,p_r,points,n);
|
|
}
|
|
continue;
|
|
}
|
|
if (val_r>=vals[n]) {
|
|
for (int i=0; i<n; ++i) {
|
|
p_e[i] = (p_o[i]+points[nn+i])/2;
|
|
}
|
|
float val_e = func(p_e);
|
|
|
|
if (val_e<vals[n]) {
|
|
Logger::info("Choosing contraction\n");
|
|
addValue(n,val_e,vals,p_e,points,n);
|
|
continue;
|
|
}
|
|
}
|
|
{
|
|
Logger::info("Full contraction\n");
|
|
for (int j=1; j<=n; ++j) {
|
|
for (int i=0; i<n; ++i) {
|
|
points[j*n+i] = (points[j*n+i]+points[i])/2;
|
|
}
|
|
float val = func(points+j*n);
|
|
addValue(j,val,vals,points+j*n,points,n);
|
|
}
|
|
}
|
|
}
|
|
|
|
float bestVal = vals[0];
|
|
|
|
delete[] p_r;
|
|
delete[] p_o;
|
|
delete[] p_e;
|
|
if (ownVals) delete[] vals;
|
|
|
|
return bestVal;
|
|
}
|
|
|
|
}
|
|
|
|
#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|