opencv/modules/gpu/test/test_calib3d.cpp
Vladislav Vinogradov ade7394e77 refactored and fixed bugs in gpu warp functions (remap, resize, warpAffine, warpPerspective)
wrote more complicated tests for them
implemented own version of warpAffine and warpPerspective for different border interpolation types
refactored some gpu tests
2012-03-14 15:54:17 +00:00

359 lines
11 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
using namespace testing;
//////////////////////////////////////////////////////////////////////////
// BlockMatching
struct StereoBlockMatching : TestWithParam<cv::gpu::DeviceInfo>
{
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
img_r = readImage("stereobm/aloe-R.png", CV_LOAD_IMAGE_GRAYSCALE);
img_template = readImage("stereobm/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoBlockMatching, Regression)
{
cv::Mat disp;
cv::gpu::GpuMat dev_disp;
cv::gpu::StereoBM_GPU bm(0, 128, 19);
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
dev_disp.download(disp);
disp.convertTo(disp, img_template.type());
EXPECT_MAT_NEAR(img_template, disp, 0.0);
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBlockMatching, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////////
// BeliefPropagation
struct StereoBeliefPropagation : TestWithParam<cv::gpu::DeviceInfo>
{
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("stereobp/aloe-L.png");
img_r = readImage("stereobp/aloe-R.png");
img_template = readImage("stereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoBeliefPropagation, Regression)
{
cv::Mat disp;
cv::gpu::GpuMat dev_disp;
cv::gpu::StereoBeliefPropagation bpm(64, 8, 2, 25, 0.1f, 15, 1, CV_16S);
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
dev_disp.download(disp);
disp.convertTo(disp, img_template.type());
EXPECT_MAT_NEAR(img_template, disp, 0.0);
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBeliefPropagation, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////////
// ConstantSpaceBP
struct StereoConstantSpaceBP : TestWithParam<cv::gpu::DeviceInfo>
{
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("csstereobp/aloe-L.png");
img_r = readImage("csstereobp/aloe-R.png");
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
img_template = readImage("csstereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
else
img_template = readImage("csstereobp/aloe-disp_CC1X.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoConstantSpaceBP, Regression)
{
cv::Mat disp;
cv::gpu::GpuMat dev_disp;
cv::gpu::StereoConstantSpaceBP bpm(128, 16, 4, 4);
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
dev_disp.download(disp);
disp.convertTo(disp, img_template.type());
EXPECT_MAT_NEAR(img_template, disp, 1.0);
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoConstantSpaceBP, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// projectPoints
struct ProjectPoints : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat src;
cv::Mat rvec;
cv::Mat tvec;
cv::Mat camera_mat;
std::vector<cv::Point2f> dst_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false);
rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0, 1, false);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold);
}
};
TEST_P(ProjectPoints, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat d_dst;
cv::gpu::projectPoints(cv::gpu::GpuMat(src), rvec, tvec, camera_mat, cv::Mat(), d_dst);
d_dst.download(dst);
ASSERT_EQ(dst_gold.size(), dst.cols);
ASSERT_EQ(1, dst.rows);
ASSERT_EQ(CV_32FC2, dst.type());
for (size_t i = 0; i < dst_gold.size(); ++i)
{
cv::Point2f res_gold = dst_gold[i];
cv::Point2f res_actual = dst.at<cv::Point2f>(0, i);
cv::Point2f err = res_actual - res_gold;
ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, ProjectPoints, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// transformPoints
struct TransformPoints : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat src;
cv::Mat rvec;
cv::Mat tvec;
cv::Mat rot;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false);
rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
cv::Rodrigues(rvec, rot);
}
};
TEST_P(TransformPoints, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat d_dst;
cv::gpu::transformPoints(cv::gpu::GpuMat(src), rvec, tvec, d_dst);
d_dst.download(dst);
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(src.type(), dst.type());
for (int i = 0; i < dst.cols; ++i)
{
cv::Point3f p = src.at<cv::Point3f>(0, i);
cv::Point3f res_gold(
rot.at<float>(0, 0) * p.x + rot.at<float>(0, 1) * p.y + rot.at<float>(0, 2) * p.z + tvec.at<float>(0, 0),
rot.at<float>(1, 0) * p.x + rot.at<float>(1, 1) * p.y + rot.at<float>(1, 2) * p.z + tvec.at<float>(0, 1),
rot.at<float>(2, 0) * p.x + rot.at<float>(2, 1) * p.y + rot.at<float>(2, 2) * p.z + tvec.at<float>(0, 2));
cv::Point3f res_actual = dst.at<cv::Point3f>(0, i);
cv::Point3f err = res_actual - res_gold;
ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, TransformPoints, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// solvePnPRansac
struct SolvePnPRansac : TestWithParam<cv::gpu::DeviceInfo>
{
static const int num_points = 5000;
cv::gpu::DeviceInfo devInfo;
cv::Mat object;
cv::Mat camera_mat;
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold;
cv::Mat tvec_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
object = cvtest::randomMat(rng, cv::Size(num_points, 1), CV_32FC3, 0, 100, false);
camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0.5, 1, false);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
rvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
tvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec);
}
};
TEST_P(SolvePnPRansac, Accuracy)
{
cv::Mat rvec, tvec;
std::vector<int> inliers;
cv::gpu::solvePnPRansac(object, cv::Mat(1, image_vec.size(), CV_32FC2, &image_vec[0]), camera_mat,
cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), rvec, tvec, false, 200, 2.f, 100, &inliers);
ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3f);
ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3f);
}
INSTANTIATE_TEST_CASE_P(Calib3D, SolvePnPRansac, ALL_DEVICES);
#endif // HAVE_CUDA