mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
613c12e590
CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
444 lines
19 KiB
C++
444 lines
19 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
class DNNTestNetwork : public DNNTestLayer
|
|
{
|
|
public:
|
|
void processNet(const std::string& weights, const std::string& proto,
|
|
Size inpSize, const std::string& outputLayer = "",
|
|
const std::string& halideScheduler = "",
|
|
double l1 = 0.0, double lInf = 0.0)
|
|
{
|
|
// Create a common input blob.
|
|
int blobSize[] = {1, 3, inpSize.height, inpSize.width};
|
|
Mat inp(4, blobSize, CV_32FC1);
|
|
randu(inp, 0.0f, 1.0f);
|
|
|
|
processNet(weights, proto, inp, outputLayer, halideScheduler, l1, lInf);
|
|
}
|
|
|
|
void processNet(std::string weights, std::string proto,
|
|
Mat inp, const std::string& outputLayer = "",
|
|
std::string halideScheduler = "",
|
|
double l1 = 0.0, double lInf = 0.0, double detectionConfThresh = 0.2)
|
|
{
|
|
checkBackend();
|
|
l1 = l1 ? l1 : default_l1;
|
|
lInf = lInf ? lInf : default_lInf;
|
|
|
|
weights = findDataFile(weights, false);
|
|
if (!proto.empty())
|
|
proto = findDataFile(proto);
|
|
|
|
// Create two networks - with default backend and target and a tested one.
|
|
Net netDefault = readNet(weights, proto);
|
|
netDefault.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
netDefault.setInput(inp);
|
|
Mat outDefault = netDefault.forward(outputLayer).clone();
|
|
|
|
net = readNet(weights, proto);
|
|
net.setInput(inp);
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty())
|
|
{
|
|
halideScheduler = findDataFile(halideScheduler);
|
|
net.setHalideScheduler(halideScheduler);
|
|
}
|
|
Mat out = net.forward(outputLayer).clone();
|
|
|
|
check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "First run");
|
|
|
|
// Test 2: change input.
|
|
float* inpData = (float*)inp.data;
|
|
for (int i = 0; i < inp.size[0] * inp.size[1]; ++i)
|
|
{
|
|
Mat slice(inp.size[2], inp.size[3], CV_32F, inpData);
|
|
cv::flip(slice, slice, 1);
|
|
inpData += slice.total();
|
|
}
|
|
netDefault.setInput(inp);
|
|
net.setInput(inp);
|
|
outDefault = netDefault.forward(outputLayer).clone();
|
|
out = net.forward(outputLayer).clone();
|
|
check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "Second run");
|
|
}
|
|
|
|
void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf,
|
|
double detectionConfThresh, const char* msg)
|
|
{
|
|
if (outputLayer == "detection_out")
|
|
{
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
|
{
|
|
// Inference Engine produces detections terminated by a row which starts from -1.
|
|
out = out.reshape(1, out.total() / 7);
|
|
int numDetections = 0;
|
|
while (numDetections < out.rows && out.at<float>(numDetections, 0) != -1)
|
|
{
|
|
numDetections += 1;
|
|
}
|
|
out = out.rowRange(0, numDetections);
|
|
}
|
|
normAssertDetections(ref, out, msg, detectionConfThresh, l1, lInf);
|
|
}
|
|
else
|
|
normAssert(ref, out, msg, l1, lInf);
|
|
}
|
|
|
|
Net net;
|
|
};
|
|
|
|
TEST_P(DNNTestNetwork, AlexNet)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_1GB);
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
|
|
Size(227, 227), "prob",
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" :
|
|
"dnn/halide_scheduler_alexnet.yml");
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, ResNet_50)
|
|
{
|
|
applyTestTag(
|
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
|
|
CV_TEST_TAG_DEBUG_LONG
|
|
);
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
|
|
Size(224, 224), "prob",
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" :
|
|
"dnn/halide_scheduler_resnet_50.yml");
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, SqueezeNet_v1_1)
|
|
{
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
|
|
Size(227, 227), "prob",
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" :
|
|
"dnn/halide_scheduler_squeezenet_v1_1.yml");
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, GoogLeNet)
|
|
{
|
|
applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
|
|
Size(224, 224), "prob");
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, Inception_5h)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
double l1 = default_l1, lInf = default_lInf;
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL))
|
|
{
|
|
l1 = 1.72e-5;
|
|
lInf = 8e-4;
|
|
}
|
|
processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2",
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" :
|
|
"dnn/halide_scheduler_inception_5h.yml",
|
|
l1, lInf);
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, ENet)
|
|
{
|
|
applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution",
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" :
|
|
"dnn/halide_scheduler_enet.yml",
|
|
2e-5, 0.15);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
Mat sample = imread(findDataFile("dnn/street.png"));
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
|
float diffScores = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1.5e-2 : 0.0;
|
|
float diffSquares = (target == DNN_TARGET_MYRIAD) ? 0.063 : 0.0;
|
|
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.252 : FLT_MIN;
|
|
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt",
|
|
inp, "detection_out", "", diffScores, diffSquares, detectionConfThresh);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe_Different_Width_Height)
|
|
{
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
#endif
|
|
Mat sample = imread(findDataFile("dnn/street.png"));
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 560), Scalar(127.5, 127.5, 127.5), false);
|
|
float diffScores = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.029 : 0.0;
|
|
float diffSquares = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0;
|
|
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt",
|
|
inp, "detection_out", "", diffScores, diffSquares);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
|
{
|
|
applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png"));
|
|
Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.095 : 0.0;
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0;
|
|
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.216 : 0.2;
|
|
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt",
|
|
inp, "detection_out", "", l1, lInf, detectionConfThresh);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow_Different_Width_Height)
|
|
{
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
#endif
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2);
|
|
#endif
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png"));
|
|
Mat inp = blobFromImage(sample, 1.0f, Size(300, 560), Scalar(), false);
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 0.0;
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0;
|
|
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt",
|
|
inp, "detection_out", "", l1, lInf);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
|
{
|
|
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png"));
|
|
Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.013 : 2e-5;
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.062 : 0.0;
|
|
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt",
|
|
inp, "detection_out", "", l1, lInf, 0.25);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, SSD_VGG16)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
|
|
CV_TEST_TAG_DEBUG_VERYLONG);
|
|
if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); // TODO HALIDE_CPU
|
|
double scoreThreshold = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0325 : 0.0;
|
|
const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.032 : 0.0;
|
|
Mat sample = imread(findDataFile("dnn/street.png"));
|
|
Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel",
|
|
"dnn/ssd_vgg16.prototxt", inp, "detection_out", "", scoreThreshold, lInf);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_coco)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
|
|
CV_TEST_TAG_DEBUG_LONG);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5);
|
|
#endif
|
|
|
|
const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0056 : 0.0;
|
|
const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.072 : 0.0;
|
|
processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt",
|
|
Size(46, 46), "", "", l1, lInf);
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
|
|
CV_TEST_TAG_DEBUG_VERYLONG);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5);
|
|
#endif
|
|
|
|
// output range: [-0.001, 0.97]
|
|
const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.012 : 0.0;
|
|
const float lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.16 : 0.0;
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt",
|
|
Size(46, 46), "", "", l1, lInf);
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5);
|
|
#endif
|
|
|
|
// The same .caffemodel but modified .prototxt
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt",
|
|
Size(46, 46));
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, OpenFace)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2018R5);
|
|
#endif
|
|
#endif
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0024 : 0.0;
|
|
const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.0071 : 0.0;
|
|
processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), "", "", l1, lInf);
|
|
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, opencv_face_detector)
|
|
{
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png"));
|
|
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
|
|
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt",
|
|
inp, "detection_out");
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
|
|
{
|
|
applyTestTag(
|
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
|
|
CV_TEST_TAG_DEBUG_LONG
|
|
);
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
#endif
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2);
|
|
#endif
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
Mat sample = imread(findDataFile("dnn/street.png"));
|
|
Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.015 : 0.0;
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0731 : 0.0;
|
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt",
|
|
inp, "detection_out", "", l1, lInf);
|
|
expectNoFallbacksFromIE(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, DenseNet_121)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
// Reference output values are in range [-3.807, 4.605]
|
|
float l1 = 0.0, lInf = 0.0;
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
l1 = 2e-2; lInf = 9e-2;
|
|
}
|
|
else if (target == DNN_TARGET_MYRIAD)
|
|
{
|
|
l1 = 0.1; lInf = 0.6;
|
|
}
|
|
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "", l1, lInf);
|
|
if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
expectNoFallbacksFromIE(net);
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
#if INF_ENGINE_VER_MAJOR_LE(2018050000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5);
|
|
#endif
|
|
#endif
|
|
|
|
Mat img = imread(findDataFile("dnn/googlenet_1.png"));
|
|
Mat inp = blobFromImage(img, 1.0, Size(320, 240), Scalar(103.939, 116.779, 123.68), false, false);
|
|
// Output image has values in range [-143.526, 148.539].
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.4 : 4e-5;
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7.45 : 2e-3;
|
|
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf);
|
|
#if defined(HAVE_INF_ENGINE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
|
expectNoFallbacksFromIE(net);
|
|
#endif
|
|
expectNoFallbacksFromCUDA(net);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets(true, true, false, true, true));
|
|
|
|
}} // namespace
|