mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 14:29:49 +08:00
613c12e590
CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
365 lines
12 KiB
C++
365 lines
12 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Used in accuracy and perf tests as a content of .cpp file
|
|
// Note: don't use "precomp.hpp" here
|
|
#include "opencv2/ts.hpp"
|
|
#include "opencv2/ts/ts_perf.hpp"
|
|
#include "opencv2/core/utility.hpp"
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
#include "opencv2/dnn.hpp"
|
|
#include "test_common.hpp"
|
|
|
|
#include <opencv2/core/utils/configuration.private.hpp>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
namespace cv { namespace dnn {
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
|
|
{
|
|
switch (v) {
|
|
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
|
|
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
|
|
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE"; return;
|
|
case DNN_BACKEND_VKCOM: *os << "VKCOM"; return;
|
|
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
|
|
case DNN_BACKEND_CUDA: *os << "CUDA"; return;
|
|
} // don't use "default:" to emit compiler warnings
|
|
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
|
|
}
|
|
|
|
void PrintTo(const cv::dnn::Target& v, std::ostream* os)
|
|
{
|
|
switch (v) {
|
|
case DNN_TARGET_CPU: *os << "CPU"; return;
|
|
case DNN_TARGET_OPENCL: *os << "OCL"; return;
|
|
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
|
|
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
|
|
case DNN_TARGET_VULKAN: *os << "VULKAN"; return;
|
|
case DNN_TARGET_FPGA: *os << "FPGA"; return;
|
|
case DNN_TARGET_CUDA: *os << "CUDA"; return;
|
|
case DNN_TARGET_CUDA_FP16: *os << "CUDA_FP16"; return;
|
|
} // don't use "default:" to emit compiler warnings
|
|
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
|
|
}
|
|
|
|
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
|
|
{
|
|
PrintTo(get<0>(v), os);
|
|
*os << "/";
|
|
PrintTo(get<1>(v), os);
|
|
}
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
}} // namespace
|
|
|
|
|
|
|
|
namespace opencv_test {
|
|
|
|
void normAssert(
|
|
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
|
|
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
|
|
{
|
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
|
EXPECT_LE(normL1, l1) << comment;
|
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
|
EXPECT_LE(normInf, lInf) << comment;
|
|
}
|
|
|
|
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
|
|
{
|
|
EXPECT_EQ(m.type(), CV_32FC1);
|
|
EXPECT_EQ(m.dims, 2);
|
|
EXPECT_EQ(m.cols, 4);
|
|
|
|
std::vector<cv::Rect2d> boxes(m.rows);
|
|
for (int i = 0; i < m.rows; ++i)
|
|
{
|
|
CV_Assert(m.row(i).isContinuous());
|
|
const float* data = m.ptr<float>(i);
|
|
double l = data[0], t = data[1], r = data[2], b = data[3];
|
|
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
|
|
}
|
|
return boxes;
|
|
}
|
|
|
|
void normAssertDetections(
|
|
const std::vector<int>& refClassIds,
|
|
const std::vector<float>& refScores,
|
|
const std::vector<cv::Rect2d>& refBoxes,
|
|
const std::vector<int>& testClassIds,
|
|
const std::vector<float>& testScores,
|
|
const std::vector<cv::Rect2d>& testBoxes,
|
|
const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
|
|
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
|
|
{
|
|
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
|
|
for (int i = 0; i < testBoxes.size(); ++i)
|
|
{
|
|
double testScore = testScores[i];
|
|
if (testScore < confThreshold)
|
|
continue;
|
|
|
|
int testClassId = testClassIds[i];
|
|
const cv::Rect2d& testBox = testBoxes[i];
|
|
bool matched = false;
|
|
for (int j = 0; j < refBoxes.size() && !matched; ++j)
|
|
{
|
|
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
|
|
std::abs(testScore - refScores[j]) < scores_diff)
|
|
{
|
|
double interArea = (testBox & refBoxes[j]).area();
|
|
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
|
|
if (std::abs(iou - 1.0) < boxes_iou_diff)
|
|
{
|
|
matched = true;
|
|
matchedRefBoxes[j] = true;
|
|
}
|
|
}
|
|
}
|
|
if (!matched)
|
|
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
|
|
testClassId, testScore) << testBox << std::endl;
|
|
EXPECT_TRUE(matched) << comment;
|
|
}
|
|
|
|
// Check unmatched reference detections.
|
|
for (int i = 0; i < refBoxes.size(); ++i)
|
|
{
|
|
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
|
|
{
|
|
std::cout << cv::format("Unmatched reference: class %d score %f box ",
|
|
refClassIds[i], refScores[i]) << refBoxes[i] << std::endl;
|
|
EXPECT_LE(refScores[i], confThreshold) << comment;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
|
// where N is a number of detections and an every detection is represented by
|
|
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
|
void normAssertDetections(
|
|
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
|
|
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
|
|
double boxes_iou_diff /*= 1e-4*/)
|
|
{
|
|
CV_Assert(ref.total() % 7 == 0);
|
|
CV_Assert(out.total() % 7 == 0);
|
|
ref = ref.reshape(1, ref.total() / 7);
|
|
out = out.reshape(1, out.total() / 7);
|
|
|
|
cv::Mat refClassIds, testClassIds;
|
|
ref.col(1).convertTo(refClassIds, CV_32SC1);
|
|
out.col(1).convertTo(testClassIds, CV_32SC1);
|
|
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
|
|
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
|
|
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
|
|
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
|
|
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
|
|
}
|
|
|
|
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content)
|
|
{
|
|
const std::ios::openmode mode = std::ios::in | std::ios::binary;
|
|
std::ifstream ifs(filename.c_str(), mode);
|
|
ASSERT_TRUE(ifs.is_open());
|
|
|
|
content.clear();
|
|
|
|
ifs.seekg(0, std::ios::end);
|
|
const size_t sz = ifs.tellg();
|
|
content.resize(sz);
|
|
ifs.seekg(0, std::ios::beg);
|
|
|
|
ifs.read((char*)content.data(), sz);
|
|
ASSERT_FALSE(ifs.fail());
|
|
}
|
|
|
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
|
|
bool withInferenceEngine /*= true*/,
|
|
bool withHalide /*= false*/,
|
|
bool withCpuOCV /*= true*/,
|
|
bool withVkCom /*= true*/,
|
|
bool withCUDA /*= true*/
|
|
)
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
bool withVPU = validateVPUType();
|
|
#endif
|
|
|
|
std::vector< tuple<Backend, Target> > targets;
|
|
std::vector< Target > available;
|
|
if (withHalide)
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_HALIDE);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
|
|
}
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (withInferenceEngine)
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if (*i == DNN_TARGET_MYRIAD && !withVPU)
|
|
continue;
|
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE, *i));
|
|
}
|
|
}
|
|
#else
|
|
CV_UNUSED(withInferenceEngine);
|
|
#endif
|
|
if (withVkCom)
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_VKCOM);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
targets.push_back(make_tuple(DNN_BACKEND_VKCOM, *i));
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
if(withCUDA)
|
|
{
|
|
//for (auto target : getAvailableTargets(DNN_BACKEND_CUDA))
|
|
// targets.push_back(make_tuple(DNN_BACKEND_CUDA, target));
|
|
targets.push_back(make_tuple(DNN_BACKEND_CUDA, DNN_TARGET_CUDA));
|
|
}
|
|
#endif
|
|
|
|
{
|
|
available = getAvailableTargets(DNN_BACKEND_OPENCV);
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if (!withCpuOCV && *i == DNN_TARGET_CPU)
|
|
continue;
|
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
|
|
}
|
|
}
|
|
if (targets.empty()) // validate at least CPU mode
|
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
|
|
return testing::ValuesIn(targets);
|
|
}
|
|
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
static std::string getTestInferenceEngineVPUType()
|
|
{
|
|
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
|
|
return param_vpu_type;
|
|
}
|
|
|
|
static bool validateVPUType_()
|
|
{
|
|
std::string test_vpu_type = getTestInferenceEngineVPUType();
|
|
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
|
|
{
|
|
return false;
|
|
}
|
|
|
|
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
|
bool have_vpu_target = false;
|
|
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
{
|
|
if (*i == DNN_TARGET_MYRIAD)
|
|
{
|
|
have_vpu_target = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (test_vpu_type.empty())
|
|
{
|
|
if (have_vpu_target)
|
|
{
|
|
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!have_vpu_target)
|
|
{
|
|
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
|
|
exit(1);
|
|
}
|
|
std::string dnn_vpu_type = getInferenceEngineVPUType();
|
|
if (dnn_vpu_type != test_vpu_type)
|
|
{
|
|
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
|
|
exit(1);
|
|
}
|
|
}
|
|
if (have_vpu_target)
|
|
{
|
|
std::string dnn_vpu_type = getInferenceEngineVPUType();
|
|
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2)
|
|
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
|
|
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool validateVPUType()
|
|
{
|
|
static bool result = validateVPUType_();
|
|
return result;
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
|
|
void initDNNTests()
|
|
{
|
|
const char* extraTestDataPath =
|
|
#ifdef WINRT
|
|
NULL;
|
|
#else
|
|
getenv("OPENCV_DNN_TEST_DATA_PATH");
|
|
#endif
|
|
if (extraTestDataPath)
|
|
cvtest::addDataSearchPath(extraTestDataPath);
|
|
|
|
registerGlobalSkipTag(
|
|
CV_TEST_TAG_DNN_SKIP_HALIDE,
|
|
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
|
|
);
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
registerGlobalSkipTag(
|
|
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2018R5,
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R1,
|
|
# if INF_ENGINE_RELEASE == 2019010100
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1,
|
|
# endif
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R2,
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
|
|
CV_TEST_TAG_DNN_SKIP_IE_2019R3,
|
|
#endif
|
|
CV_TEST_TAG_DNN_SKIP_IE
|
|
);
|
|
#endif
|
|
registerGlobalSkipTag(
|
|
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
|
|
CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
|
|
);
|
|
#ifdef HAVE_VULKAN
|
|
registerGlobalSkipTag(
|
|
CV_TEST_TAG_DNN_SKIP_VULKAN
|
|
);
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
registerGlobalSkipTag(
|
|
CV_TEST_TAG_DNN_SKIP_CUDA, CV_TEST_TAG_DNN_SKIP_CUDA_FP32, CV_TEST_TAG_DNN_SKIP_CUDA_FP16
|
|
);
|
|
#endif
|
|
}
|
|
|
|
} // namespace
|