opencv/modules/superres/src/btv_l1.cpp
2013-03-22 14:03:15 +04:00

620 lines
20 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
#include "precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::superres;
using namespace cv::superres::detail;
namespace
{
void calcRelativeMotions(const vector<Mat>& forwardMotions, const vector<Mat>& backwardMotions,
vector<Mat>& relForwardMotions, vector<Mat>& relBackwardMotions,
int baseIdx, Size size)
{
const int count = static_cast<int>(forwardMotions.size());
relForwardMotions.resize(count);
relForwardMotions[baseIdx].create(size, CV_32FC2);
relForwardMotions[baseIdx].setTo(Scalar::all(0));
relBackwardMotions.resize(count);
relBackwardMotions[baseIdx].create(size, CV_32FC2);
relBackwardMotions[baseIdx].setTo(Scalar::all(0));
for (int i = baseIdx - 1; i >= 0; --i)
{
add(relForwardMotions[i + 1], forwardMotions[i], relForwardMotions[i]);
add(relBackwardMotions[i + 1], backwardMotions[i + 1], relBackwardMotions[i]);
}
for (int i = baseIdx + 1; i < count; ++i)
{
add(relForwardMotions[i - 1], backwardMotions[i], relForwardMotions[i]);
add(relBackwardMotions[i - 1], forwardMotions[i - 1], relBackwardMotions[i]);
}
}
void upscaleMotions(const vector<Mat>& lowResMotions, vector<Mat>& highResMotions, int scale)
{
highResMotions.resize(lowResMotions.size());
for (size_t i = 0; i < lowResMotions.size(); ++i)
{
resize(lowResMotions[i], highResMotions[i], Size(), scale, scale, INTER_CUBIC);
multiply(highResMotions[i], Scalar::all(scale), highResMotions[i]);
}
}
void buildMotionMaps(const Mat& forwardMotion, const Mat& backwardMotion, Mat& forwardMap, Mat& backwardMap)
{
forwardMap.create(forwardMotion.size(), CV_32FC2);
backwardMap.create(forwardMotion.size(), CV_32FC2);
for (int y = 0; y < forwardMotion.rows; ++y)
{
const Point2f* forwardMotionRow = forwardMotion.ptr<Point2f>(y);
const Point2f* backwardMotionRow = backwardMotion.ptr<Point2f>(y);
Point2f* forwardMapRow = forwardMap.ptr<Point2f>(y);
Point2f* backwardMapRow = backwardMap.ptr<Point2f>(y);
for (int x = 0; x < forwardMotion.cols; ++x)
{
Point2f base(static_cast<float>(x), static_cast<float>(y));
forwardMapRow[x] = base + backwardMotionRow[x];
backwardMapRow[x] = base + forwardMotionRow[x];
}
}
}
template <typename T>
void upscaleImpl(const Mat& src, Mat& dst, int scale)
{
dst.create(src.rows * scale, src.cols * scale, src.type());
dst.setTo(Scalar::all(0));
for (int y = 0, Y = 0; y < src.rows; ++y, Y += scale)
{
const T* srcRow = src.ptr<T>(y);
T* dstRow = dst.ptr<T>(Y);
for (int x = 0, X = 0; x < src.cols; ++x, X += scale)
dstRow[X] = srcRow[x];
}
}
void upscale(const Mat& src, Mat& dst, int scale)
{
typedef void (*func_t)(const Mat& src, Mat& dst, int scale);
static const func_t funcs[] =
{
0, upscaleImpl<float>, 0, upscaleImpl<Point3f>
};
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
const func_t func = funcs[src.channels()];
func(src, dst, scale);
}
float diffSign(float a, float b)
{
return a > b ? 1.0f : a < b ? -1.0f : 0.0f;
}
Point3f diffSign(Point3f a, Point3f b)
{
return Point3f(
a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f,
a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f,
a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f
);
}
void diffSign(const Mat& src1, const Mat& src2, Mat& dst)
{
const int count = src1.cols * src1.channels();
dst.create(src1.size(), src1.type());
for (int y = 0; y < src1.rows; ++y)
{
const float* src1Ptr = src1.ptr<float>(y);
const float* src2Ptr = src2.ptr<float>(y);
float* dstPtr = dst.ptr<float>(y);
for (int x = 0; x < count; ++x)
dstPtr[x] = diffSign(src1Ptr[x], src2Ptr[x]);
}
}
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights)
{
const size_t size = btvKernelSize * btvKernelSize;
btvWeights.resize(size);
const int ksize = (btvKernelSize - 1) / 2;
const float alpha_f = static_cast<float>(alpha);
for (int m = 0, ind = 0; m <= ksize; ++m)
{
for (int l = ksize; l + m >= 0; --l, ++ind)
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l));
}
}
template <typename T>
struct BtvRegularizationBody : ParallelLoopBody
{
void operator ()(const Range& range) const;
Mat src;
mutable Mat dst;
int ksize;
const float* btvWeights;
};
template <typename T>
void BtvRegularizationBody<T>::operator ()(const Range& range) const
{
for (int i = range.start; i < range.end; ++i)
{
const T* srcRow = src.ptr<T>(i);
T* dstRow = dst.ptr<T>(i);
for(int j = ksize; j < src.cols - ksize; ++j)
{
const T srcVal = srcRow[j];
for (int m = 0, ind = 0; m <= ksize; ++m)
{
const T* srcRow2 = src.ptr<T>(i - m);
const T* srcRow3 = src.ptr<T>(i + m);
for (int l = ksize; l + m >= 0; --l, ++ind)
{
dstRow[j] += btvWeights[ind] * (diffSign(srcVal, srcRow3[j + l]) - diffSign(srcRow2[j - l], srcVal));
}
}
}
}
}
template <typename T>
void calcBtvRegularizationImpl(const Mat& src, Mat& dst, int btvKernelSize, const vector<float>& btvWeights)
{
dst.create(src.size(), src.type());
dst.setTo(Scalar::all(0));
const int ksize = (btvKernelSize - 1) / 2;
BtvRegularizationBody<T> body;
body.src = src;
body.dst = dst;
body.ksize = ksize;
body.btvWeights = &btvWeights[0];
parallel_for_(Range(ksize, src.rows - ksize), body);
}
void calcBtvRegularization(const Mat& src, Mat& dst, int btvKernelSize, const vector<float>& btvWeights)
{
typedef void (*func_t)(const Mat& src, Mat& dst, int btvKernelSize, const vector<float>& btvWeights);
static const func_t funcs[] =
{
0, calcBtvRegularizationImpl<float>, 0, calcBtvRegularizationImpl<Point3f>
};
const func_t func = funcs[src.channels()];
func(src, dst, btvKernelSize, btvWeights);
}
class BTVL1_Base
{
public:
BTVL1_Base();
void process(const vector<Mat>& src, Mat& dst,
const vector<Mat>& forwardMotions, const vector<Mat>& backwardMotions,
int baseIdx);
void collectGarbage();
protected:
int scale_;
int iterations_;
double tau_;
double lambda_;
double alpha_;
int btvKernelSize_;
int blurKernelSize_;
double blurSigma_;
Ptr<DenseOpticalFlowExt> opticalFlow_;
private:
Ptr<FilterEngine> filter_;
int curBlurKernelSize_;
double curBlurSigma_;
int curSrcType_;
vector<float> btvWeights_;
int curBtvKernelSize_;
double curAlpha_;
vector<Mat> lowResForwardMotions_;
vector<Mat> lowResBackwardMotions_;
vector<Mat> highResForwardMotions_;
vector<Mat> highResBackwardMotions_;
vector<Mat> forwardMaps_;
vector<Mat> backwardMaps_;
Mat highRes_;
Mat diffTerm_, regTerm_;
Mat a_, b_, c_;
};
BTVL1_Base::BTVL1_Base()
{
scale_ = 4;
iterations_ = 180;
lambda_ = 0.03;
tau_ = 1.3;
alpha_ = 0.7;
btvKernelSize_ = 7;
blurKernelSize_ = 5;
blurSigma_ = 0.0;
opticalFlow_ = createOptFlow_Farneback();
curBlurKernelSize_ = -1;
curBlurSigma_ = -1.0;
curSrcType_ = -1;
curBtvKernelSize_ = -1;
curAlpha_ = -1.0;
}
void BTVL1_Base::process(const vector<Mat>& src, Mat& dst, const vector<Mat>& forwardMotions, const vector<Mat>& backwardMotions, int baseIdx)
{
CV_Assert( scale_ > 1 );
CV_Assert( iterations_ > 0 );
CV_Assert( tau_ > 0.0 );
CV_Assert( alpha_ > 0.0 );
CV_Assert( btvKernelSize_ > 0 );
CV_Assert( blurKernelSize_ > 0 );
CV_Assert( blurSigma_ >= 0.0 );
// update blur filter and btv weights
if (filter_.empty() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
{
filter_ = createGaussianFilter(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_);
curBlurKernelSize_ = blurKernelSize_;
curBlurSigma_ = blurSigma_;
curSrcType_ = src[0].type();
}
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
{
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
curBtvKernelSize_ = btvKernelSize_;
curAlpha_ = alpha_;
}
// calc high res motions
calcRelativeMotions(forwardMotions, backwardMotions, lowResForwardMotions_, lowResBackwardMotions_, baseIdx, src[0].size());
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_);
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_);
forwardMaps_.resize(highResForwardMotions_.size());
backwardMaps_.resize(highResForwardMotions_.size());
for (size_t i = 0; i < highResForwardMotions_.size(); ++i)
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]);
// initial estimation
const Size lowResSize = src[0].size();
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);
resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_CUBIC);
// iterations
diffTerm_.create(highResSize, highRes_.type());
a_.create(highResSize, highRes_.type());
b_.create(highResSize, highRes_.type());
c_.create(lowResSize, highRes_.type());
for (int i = 0; i < iterations_; ++i)
{
diffTerm_.setTo(Scalar::all(0));
for (size_t k = 0; k < src.size(); ++k)
{
// a = M * Ih
remap(highRes_, a_, backwardMaps_[k], noArray(), INTER_NEAREST);
// b = HM * Ih
filter_->apply(a_, b_);
// c = DHM * Ih
resize(b_, c_, lowResSize, 0, 0, INTER_NEAREST);
diffSign(src[k], c_, c_);
// a = Dt * diff
upscale(c_, a_, scale_);
// b = HtDt * diff
filter_->apply(a_, b_);
// a = MtHtDt * diff
remap(b_, a_, forwardMaps_[k], noArray(), INTER_NEAREST);
add(diffTerm_, a_, diffTerm_);
}
if (lambda_ > 0)
{
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_, btvWeights_);
addWeighted(diffTerm_, 1.0, regTerm_, -lambda_, 0.0, diffTerm_);
}
addWeighted(highRes_, 1.0, diffTerm_, tau_, 0.0, highRes_);
}
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_);
highRes_(inner).copyTo(dst);
}
void BTVL1_Base::collectGarbage()
{
filter_.release();
lowResForwardMotions_.clear();
lowResBackwardMotions_.clear();
highResForwardMotions_.clear();
highResBackwardMotions_.clear();
forwardMaps_.clear();
backwardMaps_.clear();
highRes_.release();
diffTerm_.release();
regTerm_.release();
a_.release();
b_.release();
c_.release();
}
////////////////////////////////////////////////////////////////////
class BTVL1 : public SuperResolution, private BTVL1_Base
{
public:
AlgorithmInfo* info() const;
BTVL1();
void collectGarbage();
protected:
void initImpl(Ptr<FrameSource>& frameSource);
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output);
private:
int temporalAreaRadius_;
void readNextFrame(Ptr<FrameSource>& frameSource);
void processFrame(int idx);
Mat curFrame_;
Mat prevFrame_;
vector<Mat> frames_;
vector<Mat> forwardMotions_;
vector<Mat> backwardMotions_;
vector<Mat> outputs_;
int storePos_;
int procPos_;
int outPos_;
vector<Mat> srcFrames_;
vector<Mat> srcForwardMotions_;
vector<Mat> srcBackwardMotions_;
Mat finalOutput_;
};
CV_INIT_ALGORITHM(BTVL1, "SuperResolution.BTVL1",
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor.");
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count.");
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method.");
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term.");
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV.");
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter.");
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size.");
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma.");
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area.");
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."));
BTVL1::BTVL1()
{
temporalAreaRadius_ = 4;
}
void BTVL1::collectGarbage()
{
curFrame_.release();
prevFrame_.release();
frames_.clear();
forwardMotions_.clear();
backwardMotions_.clear();
outputs_.clear();
srcFrames_.clear();
srcForwardMotions_.clear();
srcBackwardMotions_.clear();
finalOutput_.release();
SuperResolution::collectGarbage();
BTVL1_Base::collectGarbage();
}
void BTVL1::initImpl(Ptr<FrameSource>& frameSource)
{
const int cacheSize = 2 * temporalAreaRadius_ + 1;
frames_.resize(cacheSize);
forwardMotions_.resize(cacheSize);
backwardMotions_.resize(cacheSize);
outputs_.resize(cacheSize);
storePos_ = -1;
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t)
readNextFrame(frameSource);
for (int i = 0; i <= temporalAreaRadius_; ++i)
processFrame(i);
procPos_ = temporalAreaRadius_;
outPos_ = -1;
}
void BTVL1::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
{
if (outPos_ >= storePos_)
{
_output.release();
return;
}
readNextFrame(frameSource);
if (procPos_ < storePos_)
{
++procPos_;
processFrame(procPos_);
}
++outPos_;
const Mat& curOutput = at(outPos_, outputs_);
if (_output.kind() < _InputArray::OPENGL_BUFFER)
curOutput.convertTo(_output, CV_8U);
else
{
curOutput.convertTo(finalOutput_, CV_8U);
arrCopy(finalOutput_, _output);
}
}
void BTVL1::readNextFrame(Ptr<FrameSource>& frameSource)
{
frameSource->nextFrame(curFrame_);
if (curFrame_.empty())
return;
++storePos_;
curFrame_.convertTo(at(storePos_, frames_), CV_32F);
if (storePos_ > 0)
{
opticalFlow_->calc(prevFrame_, curFrame_, at(storePos_ - 1, forwardMotions_));
opticalFlow_->calc(curFrame_, prevFrame_, at(storePos_, backwardMotions_));
}
curFrame_.copyTo(prevFrame_);
}
void BTVL1::processFrame(int idx)
{
const int startIdx = max(idx - temporalAreaRadius_, 0);
const int procIdx = idx;
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_);
const int count = endIdx - startIdx + 1;
srcFrames_.resize(count);
srcForwardMotions_.resize(count);
srcBackwardMotions_.resize(count);
int baseIdx = -1;
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k)
{
if (i == procIdx)
baseIdx = k;
srcFrames_[k] = at(i, frames_);
if (i < endIdx)
srcForwardMotions_[k] = at(i, forwardMotions_);
if (i > startIdx)
srcBackwardMotions_[k] = at(i, backwardMotions_);
}
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx);
}
}
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1()
{
return new BTVL1;
}