opencv/modules/gapi/src/executor/gstreamingexecutor.cpp
2020-06-04 22:14:42 +03:00

1074 lines
41 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#include "precomp.hpp"
#include <iostream>
#include <ade/util/zip_range.hpp>
#include <opencv2/gapi/opencv_includes.hpp>
#include "api/gproto_priv.hpp" // ptr(GRunArgP)
#include "compiler/passes/passes.hpp"
#include "backends/common/gbackend.hpp" // createMat
#include "compiler/gcompiler.hpp" // for compileIslands
#include "executor/gstreamingexecutor.hpp"
namespace
{
using namespace cv::gimpl::stream;
#if !defined(GAPI_STANDALONE)
class VideoEmitter final: public cv::gimpl::GIslandEmitter {
cv::gapi::wip::IStreamSource::Ptr src;
virtual bool pull(cv::GRunArg &arg) override {
// FIXME: probably we can maintain a pool of (then) pre-allocated
// buffers to avoid runtime allocations.
// Pool size can be determined given the internal queue size.
cv::gapi::wip::Data newData;
if (!src->pull(newData)) {
return false;
}
arg = std::move(static_cast<cv::GRunArg&>(newData));
return true;
}
public:
explicit VideoEmitter(const cv::GRunArg &arg) {
src = cv::util::get<cv::gapi::wip::IStreamSource::Ptr>(arg);
}
};
#endif // GAPI_STANDALONE
class ConstEmitter final: public cv::gimpl::GIslandEmitter {
cv::GRunArg m_arg;
virtual bool pull(cv::GRunArg &arg) override {
arg = const_cast<const cv::GRunArg&>(m_arg); // FIXME: variant workaround
return true;
}
public:
explicit ConstEmitter(const cv::GRunArg &arg) : m_arg(arg) {
}
};
struct DataQueue {
static const char *name() { return "StreamingDataQueue"; }
explicit DataQueue(std::size_t capacity) {
if (capacity) {
q.set_capacity(capacity);
}
}
cv::gimpl::stream::Q q;
};
std::vector<cv::gimpl::stream::Q*> reader_queues( ade::Graph &g,
const ade::NodeHandle &obj)
{
ade::TypedGraph<DataQueue> qgr(g);
std::vector<cv::gimpl::stream::Q*> result;
for (auto &&out_eh : obj->outEdges())
{
result.push_back(&qgr.metadata(out_eh).get<DataQueue>().q);
}
return result;
}
std::vector<cv::gimpl::stream::Q*> input_queues( ade::Graph &g,
const ade::NodeHandle &obj)
{
ade::TypedGraph<DataQueue> qgr(g);
std::vector<cv::gimpl::stream::Q*> result;
for (auto &&in_eh : obj->inEdges())
{
result.push_back(qgr.metadata(in_eh).contains<DataQueue>()
? &qgr.metadata(in_eh).get<DataQueue>().q
: nullptr);
}
return result;
}
void sync_data(cv::GRunArgs &results, cv::GRunArgsP &outputs)
{
for (auto && it : ade::util::zip(ade::util::toRange(outputs),
ade::util::toRange(results)))
{
auto &out_obj = std::get<0>(it);
auto &res_obj = std::get<1>(it);
// FIXME: this conversion should be unified
using T = cv::GRunArgP;
switch (out_obj.index())
{
case T::index_of<cv::Mat*>():
*cv::util::get<cv::Mat*>(out_obj) = std::move(cv::util::get<cv::Mat>(res_obj));
break;
case T::index_of<cv::Scalar*>():
*cv::util::get<cv::Scalar*>(out_obj) = std::move(cv::util::get<cv::Scalar>(res_obj));
break;
case T::index_of<cv::detail::VectorRef>():
cv::util::get<cv::detail::VectorRef>(out_obj).mov(cv::util::get<cv::detail::VectorRef>(res_obj));
break;
case T::index_of<cv::detail::OpaqueRef>():
cv::util::get<cv::detail::OpaqueRef>(out_obj).mov(cv::util::get<cv::detail::OpaqueRef>(res_obj));
break;
default:
GAPI_Assert(false && "This value type is not supported!"); // ...maybe because of STANDALONE mode.
break;
}
}
}
// Pops an item from every input queue and combine it to the final
// result. Blocks the current thread. Returns true if the vector has
// been obtained successfully and false if a Stop message has been
// received. Handles Stop x-queue synchronization gracefully.
//
// In fact, the logic behind this method is a little bit more complex.
// The complexity comes from handling the pipeline termination
// messages. This version if GStreamerExecutable is running every
// graph island in its own thread, and threads communicate via bounded
// (limited in size) queues. Threads poll their input queues in the
// infinite loops and pass the data to their Island executables when
// the full input vector (a "stack frame") arrives.
//
// If the input stream is over or stop() is called, "Stop" messages
// are broadcasted in the graph from island to island via queues,
// starting with the emitters (sources). Since queues are bounded,
// thread may block on push() if the queue is full already and is not
// popped for some reason in the reader thread. In order to avoid
// this, once an Island gets Stop on an input, it start reading all
// other input queues until it reaches Stop messages there as well.
// Only then the thread terminates so in theory queues are left
// free'd.
//
// "Stop" messages are sent to the pipeline in these three cases:
// 1. User has called stop(): a "Stop" message is sent to every input
// queue.
// 2. Input video stream has reached its end -- its emitter sends Stop
// to its readers AND asks constant emitters (emitters attached to
// const data -- infinite data generators) to push Stop messages as
// well - in order to maintain a regular Stop procedure as defined
// above.
// 3. "Stop" message coming from a constant emitter after triggering an
// EOS notification -- see (2).
//
// There is a problem with (3). Sometimes it terminates the pipeline
// too early while some frames could still be produced with no issue,
// and our test fails with error like "got 99 frames, expected 100".
// This is how it reproduces:
//
// q1
// [const input] -----------------------> [ ISL2 ] --> [output]
// q0 q2 .->
// [stream input] ---> [ ISL1 ] -------'
//
// Video emitter is pushing frames to q0, and ISL1 is taking every
// frame from this queue and processes it. Meanwhile, q1 is a
// const-input-queue staffed with const data already, ISL2 already
// popped one, and is waiting for data from q2 (of ISL1) to arrive.
//
// When the stream is over, stream emitter pushes the last frame to
// q0, followed by a Stop sign, and _immediately_ notifies const
// emitters to broadcast Stop messages as well. In the above
// configuration, the replicated Stop message via q1 may reach ISL2
// faster than the real Stop message via q2 -- moreover, somewhere in
// q1 or q2 there may be real frames awaiting processing. ISL2 gets
// Stop via q1 and _discards_ any pending data coming from q2 -- so a
// last frame or two may be lost.
//
// A working but not very elegant solution to this problem is to tag
// Stop messages. Stop got via stop() is really a hard stop, while
// broadcasted Stop from a Const input shouldn't initiate the Island
// execution termination. Instead, its associated const data should
// remain somewhere in islands' thread local storage until a real
// "Stop" is received.
//
// Queue reader is the class which encapsulates all this logic and
// provides threads with a managed storage and an easy API to obtain
// data.
class QueueReader
{
bool m_finishing = false; // Set to true once a "soft" stop is received
std::vector<Cmd> m_cmd;
public:
bool getInputVector(std::vector<Q*> &in_queues,
cv::GRunArgs &in_constants,
cv::GRunArgs &isl_inputs);
};
bool QueueReader::getInputVector(std::vector<Q*> &in_queues,
cv::GRunArgs &in_constants,
cv::GRunArgs &isl_inputs)
{
// NOTE: in order to maintain the GRunArg's underlying object
// lifetime, keep the whole cmd vector (of size == # of inputs)
// in memory.
m_cmd.resize(in_queues.size());
isl_inputs.resize(in_queues.size());
for (auto &&it : ade::util::indexed(in_queues))
{
auto id = ade::util::index(it);
auto &q = ade::util::value(it);
if (q == nullptr)
{
GAPI_Assert(!in_constants.empty());
// NULL queue means a graph-constant value (like a
// value-initialized scalar)
// It can also hold a constant value received with
// Stop::Kind::CNST message (see above).
// FIXME: Variant move problem
isl_inputs[id] = const_cast<const cv::GRunArg&>(in_constants[id]);
continue;
}
q->pop(m_cmd[id]);
if (!cv::util::holds_alternative<Stop>(m_cmd[id]))
{
// FIXME: Variant move problem
isl_inputs[id] = const_cast<const cv::GRunArg &>(cv::util::get<cv::GRunArg>(m_cmd[id]));
}
else // A Stop sign
{
const auto &stop = cv::util::get<Stop>(m_cmd[id]);
if (stop.kind == Stop::Kind::CNST)
{
// We've got a Stop signal from a const source,
// propagated as a result of real stream reaching its
// end. Sometimes these signals come earlier than
// real EOS Stops so are deprioritized -- just
// remember the Const value here and continue
// processing other queues. Set queue pointer to
// nullptr and update the const_val vector
// appropriately
m_finishing = true;
in_queues[id] = nullptr;
in_constants.resize(in_queues.size());
in_constants[id] = std::move(stop.cdata);
// NEXT time (on a next call to getInputVector()), the
// "q==nullptr" check above will be triggered, but now
// we need to make it manually:
isl_inputs[id] = const_cast<const cv::GRunArg&>(in_constants[id]);
}
else
{
GAPI_Assert(stop.kind == Stop::Kind::HARD);
// Just got a stop sign. Reiterate through all
// _remaining valid_ queues (some of them can be
// set to nullptr already -- see above) and rewind
// data to every Stop sign per queue
for (auto &&qit : ade::util::indexed(in_queues))
{
auto id2 = ade::util::index(qit);
auto &q2 = ade::util::value(qit);
if (id == id2) continue;
Cmd cmd2;
while (q2 && !cv::util::holds_alternative<Stop>(cmd2))
q2->pop(cmd2);
}
// After queues are read to the proper indicator,
// indicate end-of-stream
return false;
} // if(Cnst)
} // if(Stop)
} // for(in_queues)
if (m_finishing)
{
// If the process is about to end (a soft Stop was received
// already) and an island has no other inputs than constant
// inputs, its queues may all become nullptrs. Indicate it as
// "no data".
return !ade::util::all_of(in_queues, [](Q *ptr){return ptr == nullptr;});
}
return true; // A regular case - there is data to process.
}
// This thread is a plain dump source actor. What it do is just:
// - Check input queue (the only one) for a control command
// - Depending on the state, obtains next data object and pushes it to the
// pipeline.
void emitterActorThread(std::shared_ptr<cv::gimpl::GIslandEmitter> emitter,
Q& in_queue,
std::vector<Q*> out_queues,
std::function<void()> cb_completion)
{
// Wait for the explicit Start command.
// ...or Stop command, this also happens.
Cmd cmd;
in_queue.pop(cmd);
GAPI_Assert( cv::util::holds_alternative<Start>(cmd)
|| cv::util::holds_alternative<Stop>(cmd));
if (cv::util::holds_alternative<Stop>(cmd))
{
for (auto &&oq : out_queues) oq->push(cmd);
return;
}
// Now start emitting the data from the source to the pipeline.
while (true)
{
Cmd cancel;
if (in_queue.try_pop(cancel))
{
// if we just popped a cancellation command...
GAPI_Assert(cv::util::holds_alternative<Stop>(cancel));
// Broadcast it to the readers and quit.
for (auto &&oq : out_queues) oq->push(cancel);
return;
}
// Try to obrain next data chunk from the source
cv::GRunArg data;
if (emitter->pull(data))
{
// // On success, broadcast it to our readers
for (auto &&oq : out_queues)
{
// FIXME: FOR SOME REASON, oq->push(Cmd{data}) doesn't work!!
// empty mats are arrived to the receivers!
// There may be a fatal bug in our variant!
const auto tmp = data;
oq->push(Cmd{tmp});
}
}
else
{
// Otherwise, broadcast STOP message to our readers and quit.
// This usually means end-of-stream, so trigger a callback
for (auto &&oq : out_queues) oq->push(Cmd{Stop{}});
if (cb_completion) cb_completion();
return;
}
}
}
class StreamingInput final: public cv::gimpl::GIslandExecutable::IInput
{
QueueReader &qr;
std::vector<Q*> &in_queues; // FIXME: This can be part of QueueReader
cv::GRunArgs &in_constants; // FIXME: This can be part of QueueReader
virtual cv::gimpl::StreamMsg get() override
{
cv::GRunArgs isl_input_args;
if (!qr.getInputVector(in_queues, in_constants, isl_input_args))
{
// Stop case
return cv::gimpl::StreamMsg{cv::gimpl::EndOfStream{}};
}
return cv::gimpl::StreamMsg{std::move(isl_input_args)};
}
virtual cv::gimpl::StreamMsg try_get() override
{
// FIXME: This is not very usable at the moment!
return get();
}
public:
explicit StreamingInput(QueueReader &rdr,
std::vector<Q*> &inq,
cv::GRunArgs &inc,
const std::vector<cv::gimpl::RcDesc> &in_descs)
: qr(rdr), in_queues(inq), in_constants(inc)
{
set(in_descs);
}
};
class StreamingOutput final: public cv::gimpl::GIslandExecutable::IOutput
{
// These objects form an internal state of the StreamingOutput
struct Posting
{
using V = cv::util::variant<cv::GRunArg, cv::gimpl::EndOfStream>;
V data;
bool ready = false;
};
using PostingList = std::list<Posting>;
std::vector<PostingList> m_postings;
std::unordered_map< const void*
, std::pair<int, PostingList::iterator>
> m_postIdx;
std::size_t m_stops_sent = 0u;
// These objects are owned externally
const cv::GMetaArgs &m_metas;
std::vector< std::vector<Q*> > &m_out_queues;
// Allocate a new data object for output under idx
// Prepare this object for posting
virtual cv::GRunArgP get(int idx) override
{
using MatType = cv::Mat;
using SclType = cv::Scalar;
// Allocate a new posting first, then bind this GRunArgP to this item
auto iter = m_postings[idx].insert(m_postings[idx].end(), Posting{});
const auto r = desc()[idx];
cv::GRunArg& out_arg = cv::util::get<cv::GRunArg>(iter->data);
cv::GRunArgP ret_val;
switch (r.shape) {
// Allocate a data object based on its shape & meta, and put it into our vectors.
// Yes, first we put a cv::Mat GRunArg, and then specify _THAT_
// pointer as an output parameter - to make sure that after island completes,
// our GRunArg still has the right (up-to-date) value.
// Same applies to other types.
// FIXME: This is absolutely ugly but seem to work perfectly for its purpose.
case cv::GShape::GMAT:
{
MatType newMat;
cv::gimpl::createMat(cv::util::get<cv::GMatDesc>(m_metas[idx]), newMat);
out_arg = cv::GRunArg(std::move(newMat));
ret_val = cv::GRunArgP(&cv::util::get<MatType>(out_arg));
}
break;
case cv::GShape::GSCALAR:
{
SclType newScl;
out_arg = cv::GRunArg(std::move(newScl));
ret_val = cv::GRunArgP(&cv::util::get<SclType>(out_arg));
}
break;
case cv::GShape::GARRAY:
{
cv::detail::VectorRef newVec;
cv::util::get<cv::detail::ConstructVec>(r.ctor)(newVec);
out_arg = cv::GRunArg(std::move(newVec));
// VectorRef is implicitly shared so no pointer is taken here
// FIXME: that variant MOVE problem again
const auto &rr = cv::util::get<cv::detail::VectorRef>(out_arg);
ret_val = cv::GRunArgP(rr);
}
break;
case cv::GShape::GOPAQUE:
{
cv::detail::OpaqueRef newOpaque;
cv::util::get<cv::detail::ConstructOpaque>(r.ctor)(newOpaque);
out_arg = cv::GRunArg(std::move(newOpaque));
// OpaqueRef is implicitly shared so no pointer is taken here
// FIXME: that variant MOVE problem again
const auto &rr = cv::util::get<cv::detail::OpaqueRef>(out_arg);
ret_val = cv::GRunArgP(rr);
}
break;
default:
cv::util::throw_error(std::logic_error("Unsupported GShape"));
}
m_postIdx[cv::gimpl::proto::ptr(ret_val)] = std::make_pair(idx, iter);
return ret_val;
}
virtual void post(cv::GRunArgP&& argp) override
{
// Mark the output ready for posting. If it is the first in the line,
// actually post it and all its successors which are ready for posting too.
auto it = m_postIdx.find(cv::gimpl::proto::ptr(argp));
GAPI_Assert(it != m_postIdx.end());
const int out_idx = it->second.first;
const auto out_iter = it->second.second;
out_iter->ready = true;
m_postIdx.erase(it); // Drop the link from the cache anyway
if (out_iter != m_postings[out_idx].begin())
{
return; // There are some pending postings in the beginning, return
}
GAPI_Assert(out_iter == m_postings[out_idx].begin());
auto post_iter = m_postings[out_idx].begin();
while (post_iter != m_postings[out_idx].end() && post_iter->ready == true)
{
Cmd cmd;
if (cv::util::holds_alternative<cv::GRunArg>(post_iter->data))
{
// FIXME: That ugly VARIANT problem
cmd = Cmd{const_cast<const cv::GRunArg&>(cv::util::get<cv::GRunArg>(post_iter->data))};
}
else
{
GAPI_Assert(cv::util::holds_alternative<cv::gimpl::EndOfStream>(post_iter->data));
cmd = Cmd{Stop{}};
m_stops_sent++;
}
for (auto &&q : m_out_queues[out_idx])
{
// FIXME: This ugly VARIANT problem
q->push(const_cast<const Cmd&>(cmd));
}
post_iter = m_postings[out_idx].erase(post_iter);
}
}
virtual void post(cv::gimpl::EndOfStream&&) override
{
// If the posting list is empty, just broadcast the stop message.
// If it is not, enqueue the Stop message in the postings list.
for (auto &&it : ade::util::indexed(m_postings))
{
const auto idx = ade::util::index(it);
auto &lst = ade::util::value(it);
if (lst.empty())
{
for (auto &&q : m_out_queues[idx])
{
q->push(Cmd(Stop{}));
}
m_stops_sent++;
}
else
{
Posting p;
p.data = Posting::V{cv::gimpl::EndOfStream{}};
p.ready = true;
lst.push_back(std::move(p)); // FIXME: For some reason {}-ctor didn't work here
}
}
}
public:
explicit StreamingOutput(const cv::GMetaArgs &metas,
std::vector< std::vector<Q*> > &out_queues,
const std::vector<cv::gimpl::RcDesc> &out_descs)
: m_metas(metas)
, m_out_queues(out_queues)
{
set(out_descs);
m_postings.resize(out_descs.size());
}
bool done() const
{
// The streaming actor work is considered DONE for this stream
// when it posted/resent all STOP messages to all its outputs.
return m_stops_sent == desc().size();
}
};
// This thread is a plain dumb processing actor. What it do is just:
// - Reads input from the input queue(s), sleeps if there's nothing to read
// - Once a full input vector is obtained, passes it to the underlying island
// executable for processing.
// - Pushes processing results down to consumers - to the subsequent queues.
// Note: Every data object consumer has its own queue.
void islandActorThread(std::vector<cv::gimpl::RcDesc> in_rcs, // FIXME: this is...
std::vector<cv::gimpl::RcDesc> out_rcs, // FIXME: ...basically just...
cv::GMetaArgs out_metas, // ...
std::shared_ptr<cv::gimpl::GIslandExecutable> island, // FIXME: ...a copy of OpDesc{}.
std::vector<Q*> in_queues,
cv::GRunArgs in_constants,
std::vector< std::vector<Q*> > out_queues)
{
GAPI_Assert(in_queues.size() == in_rcs.size());
GAPI_Assert(out_queues.size() == out_rcs.size());
GAPI_Assert(out_queues.size() == out_metas.size());
QueueReader qr;
StreamingInput input(qr, in_queues, in_constants, in_rcs);
StreamingOutput output(out_metas, out_queues, out_rcs);
while (!output.done())
{
island->run(input, output);
}
}
// The idea of collectorThread is easy. If there're multiple outputs
// in the graph, we need to pull an object from every associated queue
// and then put the resulting vector into one single queue. While it
// looks redundant, it simplifies dramatically the way how try_pull()
// is implemented - we need to check one queue instead of many.
void collectorThread(std::vector<Q*> in_queues,
Q& out_queue)
{
QueueReader qr;
while (true)
{
cv::GRunArgs this_result(in_queues.size());
cv::GRunArgs this_const(in_queues.size());
if (!qr.getInputVector(in_queues, this_const, this_result))
{
out_queue.push(Cmd{Stop{}});
return;
}
out_queue.push(Cmd{this_result});
}
}
} // anonymous namespace
cv::gimpl::GStreamingExecutor::GStreamingExecutor(std::unique_ptr<ade::Graph> &&g_model)
: m_orig_graph(std::move(g_model))
, m_island_graph(GModel::Graph(*m_orig_graph).metadata()
.get<IslandModel>().model)
, m_gim(*m_island_graph)
{
GModel::Graph gm(*m_orig_graph);
// NB: Right now GIslandModel is acyclic, and all the below code assumes that.
// NB: This naive execution code is taken from GExecutor nearly "as-is"
const auto proto = gm.metadata().get<Protocol>();
m_emitters .resize(proto.in_nhs.size());
m_emitter_queues.resize(proto.in_nhs.size());
m_sinks .resize(proto.out_nhs.size());
m_sink_queues .resize(proto.out_nhs.size());
// Very rough estimation to limit internal queue sizes.
// Pipeline depth is equal to number of its (pipeline) steps.
const auto queue_capacity = std::count_if
(m_gim.nodes().begin(),
m_gim.nodes().end(),
[&](ade::NodeHandle nh) {
return m_gim.metadata(nh).get<NodeKind>().k == NodeKind::ISLAND;
});
// If metadata was not passed to compileStreaming, Islands are not compiled at this point.
// It is fine -- Islands are then compiled in setSource (at the first valid call).
const bool islands_compiled = m_gim.metadata().contains<IslandsCompiled>();
auto sorted = m_gim.metadata().get<ade::passes::TopologicalSortData>();
for (auto nh : sorted.nodes())
{
switch (m_gim.metadata(nh).get<NodeKind>().k)
{
case NodeKind::ISLAND:
{
std::vector<RcDesc> input_rcs;
std::vector<RcDesc> output_rcs;
std::vector<GRunArg> in_constants;
cv::GMetaArgs output_metas;
input_rcs.reserve(nh->inNodes().size());
in_constants.reserve(nh->inNodes().size()); // FIXME: Ugly
output_rcs.reserve(nh->outNodes().size());
output_metas.reserve(nh->outNodes().size());
std::unordered_set<ade::NodeHandle, ade::HandleHasher<ade::Node> > const_ins;
// FIXME: THIS ORDER IS IRRELEVANT TO PROTOCOL OR ANY OTHER ORDER!
// FIXME: SAME APPLIES TO THE REGULAR GEEXECUTOR!!
auto xtract_in = [&](ade::NodeHandle slot_nh, std::vector<RcDesc> &vec)
{
const auto orig_data_nh
= m_gim.metadata(slot_nh).get<DataSlot>().original_data_node;
const auto &orig_data_info
= gm.metadata(orig_data_nh).get<Data>();
if (orig_data_info.storage == Data::Storage::CONST_VAL) {
const_ins.insert(slot_nh);
// FIXME: Variant move issue
in_constants.push_back(const_cast<const cv::GRunArg&>(gm.metadata(orig_data_nh).get<ConstValue>().arg));
} else in_constants.push_back(cv::GRunArg{}); // FIXME: Make it in some smarter way pls
if (orig_data_info.shape == GShape::GARRAY) {
// FIXME: GArray lost host constructor problem
GAPI_Assert(!cv::util::holds_alternative<cv::util::monostate>(orig_data_info.ctor));
}
vec.emplace_back(RcDesc{ orig_data_info.rc
, orig_data_info.shape
, orig_data_info.ctor});
};
auto xtract_out = [&](ade::NodeHandle slot_nh, std::vector<RcDesc> &vec, cv::GMetaArgs &metas)
{
const auto orig_data_nh
= m_gim.metadata(slot_nh).get<DataSlot>().original_data_node;
const auto &orig_data_info
= gm.metadata(orig_data_nh).get<Data>();
if (orig_data_info.shape == GShape::GARRAY) {
// FIXME: GArray lost host constructor problem
GAPI_Assert(!cv::util::holds_alternative<cv::util::monostate>(orig_data_info.ctor));
}
vec.emplace_back(RcDesc{ orig_data_info.rc
, orig_data_info.shape
, orig_data_info.ctor});
metas.emplace_back(orig_data_info.meta);
};
// FIXME: JEZ IT WAS SO AWFUL!!!!
for (auto in_slot_nh : nh->inNodes()) xtract_in(in_slot_nh, input_rcs);
for (auto out_slot_nh : nh->outNodes()) xtract_out(out_slot_nh, output_rcs, output_metas);
std::shared_ptr<GIslandExecutable> isl_exec = islands_compiled
? m_gim.metadata(nh).get<IslandExec>().object
: nullptr;
m_ops.emplace_back(OpDesc{ std::move(input_rcs)
, std::move(output_rcs)
, std::move(output_metas)
, nh
, in_constants
, isl_exec
});
// Initialize queues for every operation's input
ade::TypedGraph<DataQueue> qgr(*m_island_graph);
for (auto eh : nh->inEdges())
{
// ...only if the data is not compile-const
if (const_ins.count(eh->srcNode()) == 0) {
qgr.metadata(eh).set(DataQueue(queue_capacity));
m_internal_queues.insert(&qgr.metadata(eh).get<DataQueue>().q);
}
}
}
break;
case NodeKind::SLOT:
{
const auto orig_data_nh
= m_gim.metadata(nh).get<DataSlot>().original_data_node;
m_slots.emplace_back(DataDesc{nh, orig_data_nh});
}
break;
case NodeKind::EMIT:
{
const auto emitter_idx
= m_gim.metadata(nh).get<Emitter>().proto_index;
GAPI_Assert(emitter_idx < m_emitters.size());
m_emitters[emitter_idx] = nh;
}
break;
case NodeKind::SINK:
{
const auto sink_idx
= m_gim.metadata(nh).get<Sink>().proto_index;
GAPI_Assert(sink_idx < m_sinks.size());
m_sinks[sink_idx] = nh;
// Also initialize Sink's input queue
ade::TypedGraph<DataQueue> qgr(*m_island_graph);
GAPI_Assert(nh->inEdges().size() == 1u);
qgr.metadata(nh->inEdges().front()).set(DataQueue(queue_capacity));
m_sink_queues[sink_idx] = &qgr.metadata(nh->inEdges().front()).get<DataQueue>().q;
}
break;
default:
GAPI_Assert(false);
break;
} // switch(kind)
} // for(gim nodes)
m_out_queue.set_capacity(queue_capacity);
}
cv::gimpl::GStreamingExecutor::~GStreamingExecutor()
{
if (state == State::READY || state == State::RUNNING)
stop();
}
void cv::gimpl::GStreamingExecutor::setSource(GRunArgs &&ins)
{
GAPI_Assert(state == State::READY || state == State::STOPPED);
const auto is_video = [](const GRunArg &arg)
{
return util::holds_alternative<cv::gapi::wip::IStreamSource::Ptr>(arg);
};
const auto num_videos = std::count_if(ins.begin(), ins.end(), is_video);
if (num_videos > 1)
{
// See below why (another reason - no documented behavior
// on handling videos streams of different length)
util::throw_error(std::logic_error("Only one video source is"
" currently supported!"));
}
GModel::ConstGraph gm(*m_orig_graph);
// Now the tricky-part: completing Islands compilation if compileStreaming
// has been called without meta arguments.
// The logic is basically the following:
// - (0) Collect metadata from input vector;
// - (1) If graph is compiled with meta
// - (2) Just check if the passed objects have correct meta.
// - (3) Otherwise:
// - (4) Run metadata inference;
// - (5) If islands are not compiled at this point OR are not reshapeable:
// - (6) Compile them for a first time with this meta;
// - (7) Update internal structures with this island information
// - (8) Otherwise:
// - (9) Reshape islands to this new metadata.
// - (10) Update internal structures again
const auto update_int_metas = [&]()
{
for (auto& op : m_ops)
{
op.out_metas.resize(0);
for (auto out_slot_nh : op.nh->outNodes())
{
const auto &orig_nh = m_gim.metadata(out_slot_nh).get<DataSlot>().original_data_node;
const auto &orig_info = gm.metadata(orig_nh).get<Data>();
op.out_metas.emplace_back(orig_info.meta);
}
}
};
bool islandsRecompiled = false;
const auto new_meta = cv::descr_of(ins); // 0
if (gm.metadata().contains<OriginalInputMeta>()) // (1)
{
// NB: Metadata is tested in setSource() already - just put an assert here
GAPI_Assert(new_meta == gm.metadata().get<OriginalInputMeta>().inputMeta); // (2)
}
else // (3)
{
GCompiler::runMetaPasses(*m_orig_graph.get(), new_meta); // (4)
if (!m_gim.metadata().contains<IslandsCompiled>()
|| (m_reshapable.has_value() && m_reshapable.value() == false)) // (5)
{
bool is_reshapable = true;
GCompiler::compileIslands(*m_orig_graph.get(), m_comp_args); // (6)
for (auto& op : m_ops)
{
op.isl_exec = m_gim.metadata(op.nh).get<IslandExec>().object;
is_reshapable = is_reshapable && op.isl_exec->canReshape();
}
update_int_metas(); // (7)
m_reshapable = util::make_optional(is_reshapable);
islandsRecompiled = true;
}
else // (8)
{
for (auto& op : m_ops)
{
op.isl_exec->reshape(*m_orig_graph, m_comp_args); // (9)
}
update_int_metas(); // (10)
}
}
// Metadata handling is done!
// Walk through the protocol, set-up emitters appropriately
// There's a 1:1 mapping between emitters and corresponding data inputs.
for (auto it : ade::util::zip(ade::util::toRange(m_emitters),
ade::util::toRange(ins),
ade::util::iota(m_emitters.size())))
{
auto emit_nh = std::get<0>(it);
auto& emit_arg = std::get<1>(it);
auto emit_idx = std::get<2>(it);
auto& emitter = m_gim.metadata(emit_nh).get<Emitter>().object;
using T = GRunArg;
switch (emit_arg.index())
{
// Create a streaming emitter.
// Produces the next video frame when pulled.
case T::index_of<cv::gapi::wip::IStreamSource::Ptr>():
#if !defined(GAPI_STANDALONE)
emitter.reset(new VideoEmitter{emit_arg});
#else
util::throw_error(std::logic_error("Video is not supported in the "
"standalone mode"));
#endif
break;
default:
// Create a constant emitter.
// Produces always the same ("constant") value when pulled.
emitter.reset(new ConstEmitter{emit_arg});
m_const_vals.push_back(const_cast<cv::GRunArg &>(emit_arg)); // FIXME: move problem
m_const_emitter_queues.push_back(&m_emitter_queues[emit_idx]);
break;
}
}
// FIXME: The below code assumes our graph may have only one
// real video source (and so, only one stream which may really end)
// all other inputs are "constant" generators.
// Craft here a completion callback to notify Const emitters that
// a video source is over
GAPI_Assert(m_const_emitter_queues.size() == m_const_vals.size());
auto real_video_completion_cb = [this]()
{
for (auto it : ade::util::zip(ade::util::toRange(m_const_emitter_queues),
ade::util::toRange(m_const_vals)))
{
Stop stop;
stop.kind = Stop::Kind::CNST;
stop.cdata = std::get<1>(it);
std::get<0>(it)->push(Cmd{std::move(stop)});
}
};
// FIXME: ONLY now, after all executable objects are created,
// we can set up our execution threads. Let's do it.
// First create threads for all the emitters.
// FIXME: One way to avoid this may be including an Emitter object as a part of
// START message. Why not?
if (state == State::READY)
{
stop();
}
for (auto it : ade::util::indexed(m_emitters))
{
const auto id = ade::util::index(it); // = index in GComputation's protocol
const auto eh = ade::util::value(it);
// Prepare emitter thread parameters
auto emitter = m_gim.metadata(eh).get<Emitter>().object;
// Collect all reader queues from the emitter's the only output object
auto out_queues = reader_queues(*m_island_graph, eh->outNodes().front());
m_threads.emplace_back(emitterActorThread,
emitter,
std::ref(m_emitter_queues[id]),
out_queues,
real_video_completion_cb);
}
// Now do this for every island (in a topological order)
for (auto &&op : m_ops)
{
// Prepare island thread parameters
auto island = m_gim.metadata(op.nh).get<IslandExec>().object;
// Collect actor's input queues
auto in_queues = input_queues(*m_island_graph, op.nh);
// Collect actor's output queues.
// This may be tricky...
std::vector< std::vector<stream::Q*> > out_queues;
for (auto &&out_eh : op.nh->outNodes()) {
out_queues.push_back(reader_queues(*m_island_graph, out_eh));
}
// If Island Executable is recompiled, all its stuff including internal kernel states
// are recreated and re-initialized automatically.
// But if not, we should notify Island Executable about new started stream to let it update
// its internal variables.
if (!islandsRecompiled)
{
op.isl_exec->handleNewStream();
}
m_threads.emplace_back(islandActorThread,
op.in_objects,
op.out_objects,
op.out_metas,
island,
in_queues,
op.in_constants,
out_queues);
}
// Finally, start a collector thread.
m_threads.emplace_back(collectorThread,
m_sink_queues,
std::ref(m_out_queue));
state = State::READY;
}
void cv::gimpl::GStreamingExecutor::start()
{
if (state == State::STOPPED)
{
util::throw_error(std::logic_error("Please call setSource() before start() "
"if the pipeline has been already stopped"));
}
GAPI_Assert(state == State::READY);
// Currently just trigger our emitters to work
state = State::RUNNING;
for (auto &q : m_emitter_queues)
{
q.push(stream::Cmd{stream::Start{}});
}
}
void cv::gimpl::GStreamingExecutor::wait_shutdown()
{
// This utility is used by pull/try_pull/stop() to uniformly
// shutdown the worker threads.
// FIXME: Of course it can be designed much better
for (auto &t : m_threads) t.join();
m_threads.clear();
// Clear all queues
// If there are constant emitters, internal queues
// may be polluted with constant values and have extra
// data at the point of shutdown.
// It usually happens when there's multiple inputs,
// one constant and one is not, and the latter ends (e.g.
// with end-of-stream).
for (auto &q : m_emitter_queues) q.clear();
for (auto &q : m_sink_queues) q->clear();
for (auto &q : m_internal_queues) q->clear();
m_out_queue.clear();
state = State::STOPPED;
}
bool cv::gimpl::GStreamingExecutor::pull(cv::GRunArgsP &&outs)
{
if (state == State::STOPPED)
return false;
GAPI_Assert(state == State::RUNNING);
GAPI_Assert(m_sink_queues.size() == outs.size());
Cmd cmd;
m_out_queue.pop(cmd);
if (cv::util::holds_alternative<Stop>(cmd))
{
wait_shutdown();
return false;
}
GAPI_Assert(cv::util::holds_alternative<cv::GRunArgs>(cmd));
cv::GRunArgs &this_result = cv::util::get<cv::GRunArgs>(cmd);
sync_data(this_result, outs);
return true;
}
bool cv::gimpl::GStreamingExecutor::try_pull(cv::GRunArgsP &&outs)
{
if (state == State::STOPPED)
return false;
GAPI_Assert(m_sink_queues.size() == outs.size());
Cmd cmd;
if (!m_out_queue.try_pop(cmd)) {
return false;
}
if (cv::util::holds_alternative<Stop>(cmd))
{
wait_shutdown();
return false;
}
GAPI_Assert(cv::util::holds_alternative<cv::GRunArgs>(cmd));
cv::GRunArgs &this_result = cv::util::get<cv::GRunArgs>(cmd);
sync_data(this_result, outs);
return true;
}
void cv::gimpl::GStreamingExecutor::stop()
{
if (state == State::STOPPED)
return;
// FIXME: ...and how to deal with still-unread data then?
// Push a Stop message to the every emitter,
// wait until it broadcasts within the pipeline,
// FIXME: worker threads could stuck on push()!
// need to read the output queues until Stop!
for (auto &q : m_emitter_queues) {
q.push(stream::Cmd{stream::Stop{}});
}
// Pull messages from the final queue to ensure completion
Cmd cmd;
while (!cv::util::holds_alternative<Stop>(cmd))
{
m_out_queue.pop(cmd);
}
GAPI_Assert(cv::util::holds_alternative<Stop>(cmd));
wait_shutdown();
}
bool cv::gimpl::GStreamingExecutor::running() const
{
return (state == State::RUNNING);
}