mirror of
https://github.com/opencv/opencv.git
synced 2024-12-17 02:48:01 +08:00
596 lines
18 KiB
C++
596 lines
18 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
|
|
CV_IMPL CvRect
|
|
cvMaxRect( const CvRect* rect1, const CvRect* rect2 )
|
|
{
|
|
if( rect1 && rect2 )
|
|
{
|
|
cv::Rect max_rect;
|
|
int a, b;
|
|
|
|
max_rect.x = a = rect1->x;
|
|
b = rect2->x;
|
|
if( max_rect.x > b )
|
|
max_rect.x = b;
|
|
|
|
max_rect.width = a += rect1->width;
|
|
b += rect2->width;
|
|
|
|
if( max_rect.width < b )
|
|
max_rect.width = b;
|
|
max_rect.width -= max_rect.x;
|
|
|
|
max_rect.y = a = rect1->y;
|
|
b = rect2->y;
|
|
if( max_rect.y > b )
|
|
max_rect.y = b;
|
|
|
|
max_rect.height = a += rect1->height;
|
|
b += rect2->height;
|
|
|
|
if( max_rect.height < b )
|
|
max_rect.height = b;
|
|
max_rect.height -= max_rect.y;
|
|
return cvRect(max_rect);
|
|
}
|
|
else if( rect1 )
|
|
return *rect1;
|
|
else if( rect2 )
|
|
return *rect2;
|
|
else
|
|
return cvRect(0,0,0,0);
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
|
|
{
|
|
if( !pt )
|
|
CV_Error( CV_StsNullPtr, "NULL vertex array pointer" );
|
|
cv::RotatedRect(box).points((cv::Point2f*)pt);
|
|
}
|
|
|
|
|
|
double cv::pointPolygonTest( InputArray _contour, Point2f pt, bool measureDist )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
double result = 0;
|
|
Mat contour = _contour.getMat();
|
|
int i, total = contour.checkVector(2), counter = 0;
|
|
int depth = contour.depth();
|
|
CV_Assert( total >= 0 && (depth == CV_32S || depth == CV_32F));
|
|
|
|
bool is_float = depth == CV_32F;
|
|
double min_dist_num = FLT_MAX, min_dist_denom = 1;
|
|
Point ip(cvRound(pt.x), cvRound(pt.y));
|
|
|
|
if( total == 0 )
|
|
return measureDist ? -DBL_MAX : -1;
|
|
|
|
const Point* cnt = contour.ptr<Point>();
|
|
const Point2f* cntf = (const Point2f*)cnt;
|
|
|
|
if( !is_float && !measureDist && ip.x == pt.x && ip.y == pt.y )
|
|
{
|
|
// the fastest "purely integer" branch
|
|
Point v0, v = cnt[total-1];
|
|
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
v0 = v;
|
|
v = cnt[i];
|
|
|
|
if( (v0.y <= ip.y && v.y <= ip.y) ||
|
|
(v0.y > ip.y && v.y > ip.y) ||
|
|
(v0.x < ip.x && v.x < ip.x) )
|
|
{
|
|
if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y &&
|
|
((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) )
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
int64 dist = static_cast<int64>(ip.y - v0.y)*(v.x - v0.x)
|
|
- static_cast<int64>(ip.x - v0.x)*(v.y - v0.y);
|
|
if( dist == 0 )
|
|
return 0;
|
|
if( v.y < v0.y )
|
|
dist = -dist;
|
|
counter += dist > 0;
|
|
}
|
|
|
|
result = counter % 2 == 0 ? -1 : 1;
|
|
}
|
|
else
|
|
{
|
|
Point2f v0, v;
|
|
Point iv;
|
|
|
|
if( is_float )
|
|
{
|
|
v = cntf[total-1];
|
|
}
|
|
else
|
|
{
|
|
v = cnt[total-1];
|
|
}
|
|
|
|
if( !measureDist )
|
|
{
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
double dist;
|
|
v0 = v;
|
|
if( is_float )
|
|
v = cntf[i];
|
|
else
|
|
v = cnt[i];
|
|
|
|
if( (v0.y <= pt.y && v.y <= pt.y) ||
|
|
(v0.y > pt.y && v.y > pt.y) ||
|
|
(v0.x < pt.x && v.x < pt.x) )
|
|
{
|
|
if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y &&
|
|
((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) )
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y);
|
|
if( dist == 0 )
|
|
return 0;
|
|
if( v.y < v0.y )
|
|
dist = -dist;
|
|
counter += dist > 0;
|
|
}
|
|
|
|
result = counter % 2 == 0 ? -1 : 1;
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1;
|
|
|
|
v0 = v;
|
|
if( is_float )
|
|
v = cntf[i];
|
|
else
|
|
v = cnt[i];
|
|
|
|
dx = v.x - v0.x; dy = v.y - v0.y;
|
|
dx1 = pt.x - v0.x; dy1 = pt.y - v0.y;
|
|
dx2 = pt.x - v.x; dy2 = pt.y - v.y;
|
|
|
|
if( dx1*dx + dy1*dy <= 0 )
|
|
dist_num = dx1*dx1 + dy1*dy1;
|
|
else if( dx2*dx + dy2*dy >= 0 )
|
|
dist_num = dx2*dx2 + dy2*dy2;
|
|
else
|
|
{
|
|
dist_num = (dy1*dx - dx1*dy);
|
|
dist_num *= dist_num;
|
|
dist_denom = dx*dx + dy*dy;
|
|
}
|
|
|
|
if( dist_num*min_dist_denom < min_dist_num*dist_denom )
|
|
{
|
|
min_dist_num = dist_num;
|
|
min_dist_denom = dist_denom;
|
|
if( min_dist_num == 0 )
|
|
break;
|
|
}
|
|
|
|
if( (v0.y <= pt.y && v.y <= pt.y) ||
|
|
(v0.y > pt.y && v.y > pt.y) ||
|
|
(v0.x < pt.x && v.x < pt.x) )
|
|
continue;
|
|
|
|
dist_num = dy1*dx - dx1*dy;
|
|
if( dy < 0 )
|
|
dist_num = -dist_num;
|
|
counter += dist_num > 0;
|
|
}
|
|
|
|
result = std::sqrt(min_dist_num/min_dist_denom);
|
|
if( counter % 2 == 0 )
|
|
result = -result;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
CV_IMPL double
|
|
cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist )
|
|
{
|
|
cv::AutoBuffer<double> abuf;
|
|
cv::Mat contour = cv::cvarrToMat(_contour, false, false, 0, &abuf);
|
|
return cv::pointPolygonTest(contour, pt, measure_dist != 0);
|
|
}
|
|
|
|
/*
|
|
This code is described in "Computational Geometry in C" (Second Edition),
|
|
Chapter 7. It is not written to be comprehensible without the
|
|
explanation in that book.
|
|
|
|
Written by Joseph O'Rourke.
|
|
Last modified: December 1997
|
|
Questions to orourke@cs.smith.edu.
|
|
--------------------------------------------------------------------
|
|
This code is Copyright 1997 by Joseph O'Rourke. It may be freely
|
|
redistributed in its entirety provided that this copyright notice is
|
|
not removed.
|
|
--------------------------------------------------------------------
|
|
*/
|
|
|
|
namespace cv
|
|
{
|
|
typedef enum { Pin, Qin, Unknown } tInFlag;
|
|
|
|
static int areaSign( Point2f a, Point2f b, Point2f c )
|
|
{
|
|
static const double eps = 1e-5;
|
|
double area2 = (b.x - a.x) * (double)(c.y - a.y) - (c.x - a.x ) * (double)(b.y - a.y);
|
|
return area2 > eps ? 1 : area2 < -eps ? -1 : 0;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Returns true iff point c lies on the closed segment ab.
|
|
// Assumes it is already known that abc are collinear.
|
|
//---------------------------------------------------------------------
|
|
static bool between( Point2f a, Point2f b, Point2f c )
|
|
{
|
|
Point2f ba, ca;
|
|
|
|
// If ab not vertical, check betweenness on x; else on y.
|
|
if ( a.x != b.x )
|
|
return ((a.x <= c.x) && (c.x <= b.x)) ||
|
|
((a.x >= c.x) && (c.x >= b.x));
|
|
else
|
|
return ((a.y <= c.y) && (c.y <= b.y)) ||
|
|
((a.y >= c.y) && (c.y >= b.y));
|
|
}
|
|
|
|
static char parallelInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
|
|
{
|
|
char code = 'e';
|
|
if( areaSign(a, b, c) != 0 )
|
|
code = '0';
|
|
else if( between(a, b, c) && between(a, b, d))
|
|
p = c, q = d;
|
|
else if( between(c, d, a) && between(c, d, b))
|
|
p = a, q = b;
|
|
else if( between(a, b, c) && between(c, d, b))
|
|
p = c, q = b;
|
|
else if( between(a, b, c) && between(c, d, a))
|
|
p = c, q = a;
|
|
else if( between(a, b, d) && between(c, d, b))
|
|
p = d, q = b;
|
|
else if( between(a, b, d) && between(c, d, a))
|
|
p = d, q = a;
|
|
else
|
|
code = '0';
|
|
return code;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// segSegInt: Finds the point of intersection p between two closed
|
|
// segments ab and cd. Returns p and a char with the following meaning:
|
|
// 'e': The segments collinearly overlap, sharing a point.
|
|
// 'v': An endpoint (vertex) of one segment is on the other segment,
|
|
// but 'e' doesn't hold.
|
|
// '1': The segments intersect properly (i.e., they share a point and
|
|
// neither 'v' nor 'e' holds).
|
|
// '0': The segments do not intersect (i.e., they share no points).
|
|
// Note that two collinear segments that share just one point, an endpoint
|
|
// of each, returns 'e' rather than 'v' as one might expect.
|
|
//---------------------------------------------------------------------
|
|
static char segSegInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
|
|
{
|
|
double s, t; // The two parameters of the parametric eqns.
|
|
double num, denom; // Numerator and denoninator of equations.
|
|
char code = '?'; // Return char characterizing intersection.
|
|
|
|
denom = a.x * (double)( d.y - c.y ) +
|
|
b.x * (double)( c.y - d.y ) +
|
|
d.x * (double)( b.y - a.y ) +
|
|
c.x * (double)( a.y - b.y );
|
|
|
|
// If denom is zero, then segments are parallel: handle separately.
|
|
if (denom == 0.0)
|
|
return parallelInt(a, b, c, d, p, q);
|
|
|
|
num = a.x * (double)( d.y - c.y ) +
|
|
c.x * (double)( a.y - d.y ) +
|
|
d.x * (double)( c.y - a.y );
|
|
if ( (num == 0.0) || (num == denom) ) code = 'v';
|
|
s = num / denom;
|
|
|
|
num = -( a.x * (double)( c.y - b.y ) +
|
|
b.x * (double)( a.y - c.y ) +
|
|
c.x * (double)( b.y - a.y ) );
|
|
if ( (num == 0.0) || (num == denom) ) code = 'v';
|
|
t = num / denom;
|
|
|
|
if ( (0.0 < s) && (s < 1.0) &&
|
|
(0.0 < t) && (t < 1.0) )
|
|
code = '1';
|
|
else if ( (0.0 > s) || (s > 1.0) ||
|
|
(0.0 > t) || (t > 1.0) )
|
|
code = '0';
|
|
|
|
p.x = (float)(a.x + s*(b.x - a.x));
|
|
p.y = (float)(a.y + s*(b.y - a.y));
|
|
|
|
return code;
|
|
}
|
|
|
|
static tInFlag inOut( Point2f p, tInFlag inflag, int aHB, int bHA, Point2f*& result )
|
|
{
|
|
if( p != result[-1] )
|
|
*result++ = p;
|
|
// Update inflag.
|
|
return aHB > 0 ? Pin : bHA > 0 ? Qin : inflag;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Advances and prints out an inside vertex if appropriate.
|
|
//---------------------------------------------------------------------
|
|
static int advance( int a, int *aa, int n, bool inside, Point2f v, Point2f*& result )
|
|
{
|
|
if( inside && v != result[-1] )
|
|
*result++ = v;
|
|
(*aa)++;
|
|
return (a+1) % n;
|
|
}
|
|
|
|
static void addSharedSeg( Point2f p, Point2f q, Point2f*& result )
|
|
{
|
|
if( p != result[-1] )
|
|
*result++ = p;
|
|
if( q != result[-1] )
|
|
*result++ = q;
|
|
}
|
|
|
|
|
|
static int intersectConvexConvex_( const Point2f* P, int n, const Point2f* Q, int m,
|
|
Point2f* result, float* _area )
|
|
{
|
|
Point2f* result0 = result;
|
|
// P has n vertices, Q has m vertices.
|
|
int a=0, b=0; // indices on P and Q (resp.)
|
|
Point2f Origin(0,0);
|
|
tInFlag inflag=Unknown; // {Pin, Qin, Unknown}: which inside
|
|
int aa=0, ba=0; // # advances on a & b indices (after 1st inter.)
|
|
bool FirstPoint=true;// Is this the first point? (used to initialize).
|
|
Point2f p0; // The first point.
|
|
*result++ = Point2f(FLT_MAX, FLT_MAX);
|
|
|
|
do
|
|
{
|
|
// Computations of key variables.
|
|
int a1 = (a + n - 1) % n; // a-1, b-1 (resp.)
|
|
int b1 = (b + m - 1) % m;
|
|
|
|
Point2f A = P[a] - P[a1], B = Q[b] - Q[b1]; // directed edges on P and Q (resp.)
|
|
|
|
int cross = areaSign( Origin, A, B ); // sign of z-component of A x B
|
|
int aHB = areaSign( Q[b1], Q[b], P[a] ); // a in H(b).
|
|
int bHA = areaSign( P[a1], P[a], Q[b] ); // b in H(A);
|
|
|
|
// If A & B intersect, update inflag.
|
|
Point2f p, q;
|
|
int code = segSegInt( P[a1], P[a], Q[b1], Q[b], p, q );
|
|
if( code == '1' || code == 'v' )
|
|
{
|
|
if( inflag == Unknown && FirstPoint )
|
|
{
|
|
aa = ba = 0;
|
|
FirstPoint = false;
|
|
p0 = p;
|
|
*result++ = p;
|
|
}
|
|
inflag = inOut( p, inflag, aHB, bHA, result );
|
|
}
|
|
|
|
//-----Advance rules-----
|
|
|
|
// Special case: A & B overlap and oppositely oriented.
|
|
if( code == 'e' && A.ddot(B) < 0 )
|
|
{
|
|
addSharedSeg( p, q, result );
|
|
return (int)(result - result0);
|
|
}
|
|
|
|
// Special case: A & B parallel and separated.
|
|
if( cross == 0 && aHB < 0 && bHA < 0 )
|
|
return (int)(result - result0);
|
|
|
|
// Special case: A & B collinear.
|
|
else if ( cross == 0 && aHB == 0 && bHA == 0 ) {
|
|
// Advance but do not output point.
|
|
if ( inflag == Pin )
|
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
|
else
|
|
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
|
}
|
|
|
|
// Generic cases.
|
|
else if( cross >= 0 )
|
|
{
|
|
if( bHA > 0)
|
|
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
|
else
|
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
|
}
|
|
else
|
|
{
|
|
if( aHB > 0)
|
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
|
else
|
|
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
|
}
|
|
// Quit when both adv. indices have cycled, or one has cycled twice.
|
|
}
|
|
while ( ((aa < n) || (ba < m)) && (aa < 2*n) && (ba < 2*m) );
|
|
|
|
// Deal with special cases: not implemented.
|
|
if( inflag == Unknown )
|
|
{
|
|
// The boundaries of P and Q do not cross.
|
|
// ...
|
|
}
|
|
|
|
int i, nr = (int)(result - result0);
|
|
double area = 0;
|
|
Point2f prev = result0[nr-1];
|
|
for( i = 1; i < nr; i++ )
|
|
{
|
|
result0[i-1] = result0[i];
|
|
area += (double)prev.x*result0[i].y - (double)prev.y*result0[i].x;
|
|
prev = result0[i];
|
|
}
|
|
|
|
*_area = (float)(area*0.5);
|
|
|
|
if( result0[nr-2] == result0[0] && nr > 1 )
|
|
nr--;
|
|
return nr-1;
|
|
}
|
|
|
|
}
|
|
|
|
float cv::intersectConvexConvex( InputArray _p1, InputArray _p2, OutputArray _p12, bool handleNested )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Mat p1 = _p1.getMat(), p2 = _p2.getMat();
|
|
CV_Assert( p1.depth() == CV_32S || p1.depth() == CV_32F );
|
|
CV_Assert( p2.depth() == CV_32S || p2.depth() == CV_32F );
|
|
|
|
int n = p1.checkVector(2, p1.depth(), true);
|
|
int m = p2.checkVector(2, p2.depth(), true);
|
|
|
|
CV_Assert( n >= 0 && m >= 0 );
|
|
|
|
if( n < 2 || m < 2 )
|
|
{
|
|
_p12.release();
|
|
return 0.f;
|
|
}
|
|
|
|
AutoBuffer<Point2f> _result(n*2 + m*2 + 1);
|
|
Point2f *fp1 = _result.data(), *fp2 = fp1 + n;
|
|
Point2f* result = fp2 + m;
|
|
int orientation = 0;
|
|
|
|
for( int k = 1; k <= 2; k++ )
|
|
{
|
|
Mat& p = k == 1 ? p1 : p2;
|
|
int len = k == 1 ? n : m;
|
|
Point2f* dst = k == 1 ? fp1 : fp2;
|
|
|
|
Mat temp(p.size(), CV_MAKETYPE(CV_32F, p.channels()), dst);
|
|
p.convertTo(temp, CV_32F);
|
|
CV_Assert( temp.ptr<Point2f>() == dst );
|
|
Point2f diff0 = dst[0] - dst[len-1];
|
|
for( int i = 1; i < len; i++ )
|
|
{
|
|
double s = diff0.cross(dst[i] - dst[i-1]);
|
|
if( s != 0 )
|
|
{
|
|
if( s < 0 )
|
|
{
|
|
orientation++;
|
|
flip( temp, temp, temp.rows > 1 ? 0 : 1 );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
float area = 0.f;
|
|
int nr = intersectConvexConvex_(fp1, n, fp2, m, result, &area);
|
|
if( nr == 0 )
|
|
{
|
|
if( !handleNested )
|
|
{
|
|
_p12.release();
|
|
return 0.f;
|
|
}
|
|
|
|
if( pointPolygonTest(_InputArray(fp1, n), fp2[0], false) >= 0 )
|
|
{
|
|
result = fp2;
|
|
nr = m;
|
|
}
|
|
else if( pointPolygonTest(_InputArray(fp2, m), fp1[0], false) >= 0 )
|
|
{
|
|
result = fp1;
|
|
nr = n;
|
|
}
|
|
else
|
|
{
|
|
_p12.release();
|
|
return 0.f;
|
|
}
|
|
area = (float)contourArea(_InputArray(result, nr), false);
|
|
}
|
|
|
|
if( _p12.needed() )
|
|
{
|
|
Mat temp(nr, 1, CV_32FC2, result);
|
|
// if both input contours were reflected,
|
|
// let's orient the result as the input vectors
|
|
if( orientation == 2 )
|
|
flip(temp, temp, 0);
|
|
|
|
temp.copyTo(_p12);
|
|
}
|
|
return (float)fabs(area);
|
|
}
|