opencv/modules/gapi/samples/onevpl_infer_single_roi.cpp
Biswapriyo Nath 6cf0910842
Merge pull request #22462 from Biswa96:fix-directx-check
* cmake: Fix DirectX detection in mingw

The pragma comment directive is valid for MSVC only. So, the DirectX detection
fails in mingw. The failure is fixed by adding the required linking library
(here d3d11) in the try_compile() function in OpenCVDetectDirectX.cmake file.
Also add a message if the first DirectX check fails.

* gapi: Fix compilation with mingw

These changes remove MSVC specific pragma directive. The compilation fails at
linking time due to absence of proper linking library. The required libraries
are added in corresponding CMakeLists.txt file.

* samples: Fix compilation with mingw

These changes remove MSVC specific pragma directive. The compilation fails at
linking time due to absence of proper linking library. The required libraries
are added in corresponding CMakeLists.txt file.
2022-10-03 08:37:36 +03:00

705 lines
30 KiB
C++

#include <algorithm>
#include <fstream>
#include <iostream>
#include <cctype>
#include <tuple>
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/streaming/onevpl/source.hpp>
#include <opencv2/highgui.hpp> // CommandLineParser
#include <opencv2/gapi/infer/parsers.hpp>
#ifdef HAVE_INF_ENGINE
#include <inference_engine.hpp> // ParamMap
#endif // HAVE_INF_ENGINE
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// get rid of generate macro max/min/etc from DX side
#define D3D11_NO_HELPERS
#define NOMINMAX
#include <d3d11.h>
#undef NOMINMAX
#undef D3D11_NO_HELPERS
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#ifdef __linux__
#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#include "va/va.h"
#include "va/va_drm.h"
#include <fcntl.h>
#include <unistd.h>
#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#endif // __linux__
const std::string about =
"This is an OpenCV-based version of oneVPLSource decoder example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input demultiplexed video file }"
"{ output | | Path to the output RAW video file. Use .avi extension }"
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
"{ faced | GPU | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }"
"{ cfg_params | | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }"
"{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automatically if 0 }"
"{ frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size}"
"{ vpp_frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}"
"{ roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }"
"{ source_device | CPU | choose device for decoding }"
"{ preproc_device | | choose device for preprocessing }";
namespace {
bool is_gpu(const std::string &device_name) {
return device_name.find("GPU") != std::string::npos;
}
std::string get_weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
GAPI_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
GAPI_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
// TODO: It duplicates infer_single_roi sample
cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
cv::Rect rv;
char delim[3];
std::stringstream is(rc);
is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
if (is.bad()) {
return cv::util::optional<cv::Rect>(); // empty value
}
const auto is_delim = [](char c) {
return c == ',';
};
if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
return cv::util::optional<cv::Rect>(); // empty value
}
if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
return cv::util::optional<cv::Rect>(); // empty value
}
return cv::util::make_optional(std::move(rv));
}
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// Since ATL headers might not be available on specific MSVS Build Tools
// we use simple `CComPtr` implementation like as `ComPtrGuard`
// which is not supposed to be the full functional replacement of `CComPtr`
// and it uses as RAII to make sure utilization is correct
template <typename COMNonManageableType>
void release(COMNonManageableType *ptr) {
if (ptr) {
ptr->Release();
}
}
template <typename COMNonManageableType>
using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>;
template <typename COMNonManageableType>
ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) {
return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>};
}
using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>;
AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) {
UINT flags = 0;
D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1,
D3D_FEATURE_LEVEL_11_0,
};
D3D_FEATURE_LEVEL featureLevel;
ID3D11Device* ret_device_ptr = nullptr;
ID3D11DeviceContext* ret_ctx_ptr = nullptr;
HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN,
nullptr, flags,
feature_levels,
ARRAYSIZE(feature_levels),
D3D11_SDK_VERSION, &ret_device_ptr,
&featureLevel, &ret_ctx_ptr);
if (FAILED(err)) {
throw std::runtime_error("Cannot create D3D11CreateDevice, error: " +
std::to_string(HRESULT_CODE(err)));
}
return std::make_tuple(createCOMPtrGuard(ret_device_ptr),
createCOMPtrGuard(ret_ctx_ptr));
}
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
} // anonymous namespace
namespace custom {
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
using GDetections = cv::GArray<cv::Rect>;
using GRect = cv::GOpaque<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
// TODO: It duplicates infer_single_roi sample
G_API_OP(LocateROI, <GRect(GSize)>, "sample.custom.locate-roi") {
static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
// This is the place where we can run extra analytics
// on the input image frame and select the ROI (region
// of interest) where we want to detect our objects (or
// run any other inference).
//
// Currently it doesn't do anything intelligent,
// but only crops the input image to square (this is
// the most convenient aspect ratio for detectors to use)
static void run(const cv::Size& in_size,
cv::Rect &out_rect) {
// Identify the central point & square size (- some padding)
const auto center = cv::Point{in_size.width/2, in_size.height/2};
auto sqside = std::min(in_size.width, in_size.height);
// Now build the central square ROI
out_rect = cv::Rect{ center.x - sqside/2
, center.y - sqside/2
, sqside
, sqside
};
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_face_rcs,
const cv::Rect &in_roi,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
for (auto &&rc : in_face_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Rect &in_roi,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
GAPI_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
GAPI_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Size up_roi = in_roi.size();
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
// taking the ROI into account
cv::Rect rc;
rc.x = static_cast<int>(rc_left * up_roi.width);
rc.y = static_cast<int>(rc_top * up_roi.height);
rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
rc.x += in_roi.x;
rc.y += in_roi.y;
out_objects.emplace_back(rc & surface);
}
}
};
} // namespace custom
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
struct flow {
flow(bool preproc, bool rctx) :
vpl_preproc_enable(preproc),
ie_remote_ctx_enable(rctx) {
}
bool vpl_preproc_enable = false;
bool ie_remote_ctx_enable = false;
};
using support_matrix =
std::map <std::string/*source_dev_id*/,
std::map<std::string/*preproc_device_id*/,
std::map <std::string/*rctx device_id*/, std::shared_ptr<flow>>>>;
support_matrix resolved_conf{{
{"GPU", {{
{"", {{ "CPU", std::make_shared<flow>(false, false)},
{ "GPU", {/* unsupported:
* ie GPU preproc isn't available */}}
}},
{"CPU", {{ "CPU", {/* unsupported: preproc mix */}},
{ "GPU", {/* unsupported: preproc mix */}}
}},
#if defined(HAVE_DIRECTX) && defined(HAVE_D3D11)
{"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, true)}}}
#else // TODO VAAPI under linux doesn't support GPU IE remote context
{"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, false)}}}
#endif
}}
},
{"CPU", {{
{"", {{ "CPU", std::make_shared<flow>(false, false)},
{ "GPU", std::make_shared<flow>(false, false)}
}},
{"CPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, false)}
}},
{"GPU", {{ "CPU", {/* unsupported: preproc mix */}},
{ "GPU", {/* unsupported: preproc mix */}}}}
}}
}
}};
static void print_available_cfg(std::ostream &out,
const std::string &source_device,
const std::string &preproc_device,
const std::string &ie_device_id) {
const std::string source_device_cfg_name("--source_device=");
const std::string preproc_device_cfg_name("--preproc_device=");
const std::string ie_cfg_name("--faced=");
out << "unsupported acceleration param combinations:\n"
<< source_device_cfg_name << source_device << " "
<< preproc_device_cfg_name << preproc_device << " "
<< ie_cfg_name << ie_device_id <<
"\n\nSupported matrix:\n\n" << std::endl;
for (const auto &s_d : cfg::resolved_conf) {
std::string prefix = source_device_cfg_name + s_d.first;
for (const auto &p_d : s_d.second) {
std::string mid_prefix = prefix + +"\t" + preproc_device_cfg_name +
(p_d.first.empty() ? "" : p_d.first);
for (const auto &i_d : p_d.second) {
if (i_d.second) {
std::cerr << mid_prefix << "\t" << ie_cfg_name <<i_d.first << std::endl;
}
}
}
}
}
}
int main(int argc, char *argv[]) {
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// get file name
const auto file_path = cmd.get<std::string>("input");
const auto output = cmd.get<std::string>("output");
const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
const auto face_model_path = cmd.get<std::string>("facem");
const auto streaming_queue_capacity = cmd.get<uint32_t>("streaming_queue_capacity");
const auto source_decode_queue_capacity = cmd.get<uint32_t>("frames_pool_size");
const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size");
const auto device_id = cmd.get<std::string>("faced");
const auto source_device = cmd.get<std::string>("source_device");
const auto preproc_device = cmd.get<std::string>("preproc_device");
// validate support matrix
std::shared_ptr<cfg::flow> flow_settings = cfg::resolved_conf[source_device][preproc_device][device_id];
if (!flow_settings) {
cfg::print_available_cfg(std::cerr, source_device, preproc_device, device_id);
return -1;
}
// check output file extension
if (!output.empty()) {
auto ext = output.find_last_of(".");
if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
std::cerr << "Output file should have *.avi extension for output video" << std::endl;
return -1;
}
}
// get oneVPL cfg params from cmd
std::stringstream params_list(cmd.get<std::string>("cfg_params"));
std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
try {
std::string line;
while (std::getline(params_list, line, ';')) {
source_cfgs.push_back(cfg::create_from_string(line));
}
} catch (const std::exception& ex) {
std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl;
return -1;
}
// apply VPL source optimization params
if (source_decode_queue_capacity != 0) {
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_frames_pool_size(source_decode_queue_capacity));
}
if (source_vpp_queue_capacity != 0) {
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_vpp_frames_pool_size(source_vpp_queue_capacity));
}
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
face_model_path, // path to topology IR
get_weights_path(face_model_path), // path to weights
device_id
};
// It is allowed (and highly recommended) to reuse predefined device_ptr & context_ptr objects
// received from user application. Current sample demonstrate how to deal with this situation.
//
// But if you do not need this fine-grained acceleration devices configuration then
// just use default constructors for onevpl::GSource, IE and preprocessing module.
// But please pay attention that default pipeline construction in this case will be
// very inefficient and carries out multiple CPU-GPU memory copies
//
// If you want to reach max performance and seize copy-free approach for specific
// device & context selection then follow the steps below.
// The situation is complicated a little bit in comparison with default configuration, thus
// let's focusing this:
//
// - all component-participants (Source, Preprocessing, Inference)
// must share the same device & context instances
//
// - you must wrapping your available device & context instancs into thin
// `cv::gapi::wip::Device` & `cv::gapi::wip::Context`.
// !!! Please pay attention that both objects are weak wrapper so you must ensure
// that device & context would be alived before full pipeline created !!!
//
// - you should pass such wrappers as constructor arguments for each component in pipeline:
// a) use extended constructor for `onevpl::GSource` for activating predefined device & context
// b) use `cfgContextParams` method of `cv::gapi::ie::Params` to enable `PreprocesingEngine`
// for predefined device & context
// c) use `InferenceEngine::ParamMap` to activate remote ctx in Inference Engine for given
// device & context
//
//
//// P.S. the current sample supports heterogenous pipeline construction also.
//// It is possible to make up mixed device approach.
//// Please feel free to explore different configurations!
cv::util::optional<cv::gapi::wip::onevpl::Device> gpu_accel_device;
cv::util::optional<cv::gapi::wip::onevpl::Context> gpu_accel_ctx;
cv::gapi::wip::onevpl::Device cpu_accel_device = cv::gapi::wip::onevpl::create_host_device();
cv::gapi::wip::onevpl::Context cpu_accel_ctx = cv::gapi::wip::onevpl::create_host_context();
// create GPU device if requested
if (is_gpu(device_id)
|| is_gpu(source_device)
|| is_gpu(preproc_device)) {
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// create DX11 device & context owning handles.
// wip::Device & wip::Context provide non-owning semantic of resources and act
// as weak references API wrappers in order to carry type-erased resources type
// into appropriate modules: onevpl::GSource, PreprocEngine and InferenceEngine
// Until modules are not created owner handles must stay alive
auto dx11_dev = createCOMPtrGuard<ID3D11Device>();
auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>();
auto adapter_factory = createCOMPtrGuard<IDXGIFactory>();
{
IDXGIFactory* out_factory = nullptr;
HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory),
reinterpret_cast<void**>(&out_factory));
if (FAILED(err)) {
std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl;
return -1;
}
adapter_factory = createCOMPtrGuard(out_factory);
}
auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>();
UINT adapter_index = 0;
const unsigned int refIntelVendorID = 0x8086;
IDXGIAdapter* out_adapter = nullptr;
while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) {
DXGI_ADAPTER_DESC desc{};
out_adapter->GetDesc(&desc);
if (desc.VendorId == refIntelVendorID) {
intel_adapter = createCOMPtrGuard(out_adapter);
break;
}
++adapter_index;
}
if (!intel_adapter) {
std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl;
return -1;
}
std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get());
gpu_accel_device = cv::util::make_optional(
cv::gapi::wip::onevpl::create_dx11_device(
reinterpret_cast<void*>(dx11_dev.release()),
"GPU"));
gpu_accel_ctx = cv::util::make_optional(
cv::gapi::wip::onevpl::create_dx11_context(
reinterpret_cast<void*>(dx11_ctx.release())));
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#ifdef __linux__
#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
static const char *predefined_vaapi_devices_list[] {"/dev/dri/renderD128",
"/dev/dri/renderD129",
"/dev/dri/card0",
"/dev/dri/card1",
nullptr};
std::stringstream ss;
int device_fd = -1;
VADisplay va_handle = nullptr;
for (const char **device_path = predefined_vaapi_devices_list;
*device_path != nullptr; device_path++) {
device_fd = open(*device_path, O_RDWR);
if (device_fd < 0) {
std::string info("Cannot open GPU file: \"");
info = info + *device_path + "\", error: " + strerror(errno);
ss << info << std::endl;
continue;
}
va_handle = vaGetDisplayDRM(device_fd);
if (!va_handle) {
close(device_fd);
std::string info("VAAPI device vaGetDisplayDRM failed, error: ");
info += strerror(errno);
ss << info << std::endl;
continue;
}
int major_version = 0, minor_version = 0;
VAStatus status {};
status = vaInitialize(va_handle, &major_version, &minor_version);
if (VA_STATUS_SUCCESS != status) {
close(device_fd);
va_handle = nullptr;
std::string info("Cannot initialize VAAPI device, error: ");
info += vaErrorStr(status);
ss << info << std::endl;
continue;
}
std::cout << "VAAPI created for device: " << *device_path << ", version: "
<< major_version << "." << minor_version << std::endl;
break;
}
// check device creation
if (!va_handle) {
std::cerr << "Cannot create VAAPI device. Log:\n" << ss.str() << std::endl;
return -1;
}
gpu_accel_device = cv::util::make_optional(
cv::gapi::wip::onevpl::create_vaapi_device(reinterpret_cast<void*>(va_handle),
"GPU"));
gpu_accel_ctx = cv::util::make_optional(
cv::gapi::wip::onevpl::create_vaapi_context(nullptr));
#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#endif // #ifdef __linux__
}
#ifdef HAVE_INF_ENGINE
// activate remote ctx in Inference Engine for GPU device
// when other pipeline component use the GPU device too
if (flow_settings->ie_remote_ctx_enable) {
InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"},
{"VA_DEVICE", gpu_accel_device.value().get_ptr()} });
face_net.cfgContextParams(ctx_config);
std::cout << "enforce InferenceEngine remote context on device: " << device_id << std::endl;
// NB: consider NV12 surface because it's one of native GPU image format
face_net.pluginConfig({{"GPU_NV12_TWO_INPUTS", "YES" }});
std::cout << "enforce InferenceEngine NV12 blob" << std::endl;
}
#endif // HAVE_INF_ENGINE
// turn on VPP PreprocesingEngine if available & requested
if (flow_settings->vpl_preproc_enable) {
if (is_gpu(preproc_device)) {
// activate VPP PreprocesingEngine on GPU
face_net.cfgPreprocessingParams(gpu_accel_device.value(),
gpu_accel_ctx.value());
} else {
// activate VPP PreprocesingEngine on CPU
face_net.cfgPreprocessingParams(cpu_accel_device,
cpu_accel_ctx);
}
std::cout << "enforce VPP preprocessing on device: " << preproc_device << std::endl;
} else {
std::cout << "use InferenceEngine default preprocessing" << std::endl;
}
auto kernels = cv::gapi::kernels
< custom::OCVLocateROI
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(face_net);
auto face_detection_args = cv::compile_args(networks, kernels);
if (streaming_queue_capacity != 0) {
face_detection_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
}
// Create source
cv::gapi::wip::IStreamSource::Ptr cap;
try {
if (is_gpu(source_device)) {
std::cout << "enforce VPL Source deconding on device: " << source_device << std::endl;
// use special 'Device' constructor for `onevpl::GSource`
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs,
gpu_accel_device.value(),
gpu_accel_ctx.value());
} else {
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
}
std::cout << "oneVPL source description: " << cap->descr_of() << std::endl;
} catch (const std::exception& ex) {
std::cerr << "Cannot create source: " << ex.what() << std::endl;
return -1;
}
cv::GMetaArg descr = cap->descr_of();
auto frame_descr = cv::util::get<cv::GFrameDesc>(descr);
cv::GOpaque<cv::Rect> in_roi;
auto inputs = cv::gin(cap);
// Now build the graph
cv::GFrame in;
auto size = cv::gapi::streaming::size(in);
auto graph_inputs = cv::GIn(in);
if (!opt_roi.has_value()) {
// Automatically detect ROI to infer. Make it output parameter
std::cout << "ROI is not set or invalid. Locating it automatically"
<< std::endl;
in_roi = custom::LocateROI::on(size);
} else {
// Use the value provided by user
std::cout << "Will run inference for static region "
<< opt_roi.value()
<< " only"
<< std::endl;
graph_inputs += cv::GIn(in_roi);
inputs += cv::gin(opt_roi.value());
}
auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
cv::GArray<cv::Rect> rcs = custom::ParseSSD::on(blob, in_roi, size);
auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, in_roi));
auto out = cv::gapi::streaming::BGR(out_frame);
cv::GStreamingCompiled pipeline = cv::GComputation(std::move(graph_inputs), cv::GOut(out)) // and move here
.compileStreaming(std::move(face_detection_args));
// The execution part
pipeline.setSource(std::move(inputs));
pipeline.start();
size_t frames = 0u;
cv::TickMeter tm;
cv::VideoWriter writer;
if (!output.empty() && !writer.isOpened()) {
const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
GAPI_Assert(writer.isOpened());
}
cv::Mat outMat;
tm.start();
while (pipeline.pull(cv::gout(outMat))) {
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
writer << outMat;
}
++frames;
}
tm.stop();
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
using namespace cv::gapi::wip;
if (line.empty()) {
throw std::runtime_error("Cannot parse CfgParam from emply line");
}
std::string::size_type name_endline_pos = line.find(':');
if (name_endline_pos == std::string::npos) {
throw std::runtime_error("Cannot parse CfgParam from: " + line +
"\nExpected separator \":\"");
}
std::string name = line.substr(0, name_endline_pos);
std::string value = line.substr(name_endline_pos + 1);
return cv::gapi::wip::onevpl::CfgParam::create(name, value,
/* vpp params strongly optional */
name.find("vpp.") == std::string::npos);
}
}