mirror of
https://github.com/opencv/opencv.git
synced 2024-12-03 00:10:21 +08:00
656b20a169
G-API: Support GFrame for ONNX infer * Added GFrame for ONNX * Cut test * Removed IE from assert * Review comments * Added const/bbot rstrt * View instead unique_ptr in func. sig. * Added extractMat function, ONNXCompiled contains exMat - cv::Mat with non processed input data * Added meta check for inferList2
739 lines
26 KiB
C++
739 lines
26 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2020 Intel Corporation
|
|
|
|
#include "../test_precomp.hpp"
|
|
|
|
#ifdef HAVE_ONNX
|
|
|
|
#include <stdexcept>
|
|
#include <onnxruntime_cxx_api.h>
|
|
#include <ade/util/iota_range.hpp>
|
|
|
|
#include <opencv2/gapi/own/convert.hpp>
|
|
#include <opencv2/gapi/infer/onnx.hpp>
|
|
|
|
namespace {
|
|
class TestMediaBGR final: public cv::MediaFrame::IAdapter {
|
|
cv::Mat m_mat;
|
|
using Cb = cv::MediaFrame::View::Callback;
|
|
Cb m_cb;
|
|
|
|
public:
|
|
explicit TestMediaBGR(cv::Mat m, Cb cb = [](){})
|
|
: m_mat(m), m_cb(cb) {
|
|
}
|
|
cv::GFrameDesc meta() const override {
|
|
return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)};
|
|
}
|
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
|
|
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr };
|
|
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u };
|
|
return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb});
|
|
}
|
|
};
|
|
|
|
class TestMediaNV12 final: public cv::MediaFrame::IAdapter {
|
|
cv::Mat m_y;
|
|
cv::Mat m_uv;
|
|
public:
|
|
TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) {
|
|
}
|
|
cv::GFrameDesc meta() const override {
|
|
return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)};
|
|
}
|
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
|
|
cv::MediaFrame::View::Ptrs pp = {
|
|
m_y.ptr(), m_uv.ptr(), nullptr, nullptr
|
|
};
|
|
cv::MediaFrame::View::Strides ss = {
|
|
m_y.step, m_uv.step, 0u, 0u
|
|
};
|
|
return cv::MediaFrame::View(std::move(pp), std::move(ss));
|
|
}
|
|
};
|
|
struct ONNXInitPath {
|
|
ONNXInitPath() {
|
|
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
|
|
if (env_path) {
|
|
cvtest::addDataSearchPath(env_path);
|
|
}
|
|
}
|
|
};
|
|
static ONNXInitPath g_init_path;
|
|
|
|
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
|
|
const cv::Mat in_mat1 = cv::Mat(sz_in, type);
|
|
|
|
if (CV_MAT_DEPTH(type) < CV_32F) {
|
|
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
|
|
} else {
|
|
const int fscale = 256; // avoid bits near ULP, generate stable test input
|
|
cv::Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
|
|
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
|
|
in_mat32s.convertTo(in_mat1, type, 1.0f / fscale, 0);
|
|
}
|
|
return in_mat1;
|
|
}
|
|
} // anonymous namespace
|
|
namespace opencv_test
|
|
{
|
|
namespace {
|
|
// FIXME: taken from the DNN module
|
|
void normAssert(const cv::InputArray& ref, const cv::InputArray& test,
|
|
const char *comment /*= ""*/,
|
|
const double l1 = 0.00001, const double lInf = 0.0001) {
|
|
const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
|
EXPECT_LE(normL1, l1) << comment;
|
|
|
|
const double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
|
EXPECT_LE(normInf, lInf) << comment;
|
|
}
|
|
|
|
inline std::string findModel(const std::string &model_name) {
|
|
return findDataFile("vision/" + model_name + ".onnx", false);
|
|
}
|
|
|
|
inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
|
|
dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F);
|
|
std::vector<cv::Mat> planes;
|
|
for (int i = 0; i < src.channels(); ++i) {
|
|
planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows));
|
|
}
|
|
cv::split(src, planes);
|
|
}
|
|
|
|
inline int toCV(const ONNXTensorElementDataType prec) {
|
|
switch (prec) {
|
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
|
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
|
|
default: GAPI_Assert(false && "Unsupported data type");
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
|
|
return cv::to_own<int64_t>(sz);
|
|
}
|
|
|
|
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
|
|
std::vector<const char*> out_vec;
|
|
for (const auto& el : names) {
|
|
out_vec.push_back(el.data());
|
|
}
|
|
return out_vec;
|
|
}
|
|
|
|
inline void copyToOut(const cv::Mat& in, cv::Mat& out) {
|
|
GAPI_Assert(in.depth() == CV_32F);
|
|
GAPI_Assert(in.size == out.size);
|
|
const float* const inptr = in.ptr<float>();
|
|
float* const optr = out.ptr<float>();
|
|
const int size = in.total();
|
|
for (int i = 0; i < size; ++i) {
|
|
optr[i] = inptr[i];
|
|
}
|
|
}
|
|
|
|
void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
GAPI_Assert(onnx.size() == 1u);
|
|
GAPI_Assert(gapi.size() == 1u);
|
|
// Result from Run method
|
|
const cv::Mat& in = onnx.begin()->second;
|
|
// Configured output
|
|
cv::Mat& out = gapi.begin()->second;
|
|
// Simple copy
|
|
copyToOut(in, out);
|
|
}
|
|
|
|
void remapSsdPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
// Result from Run method
|
|
const cv::Mat& in_num = onnx.at("num_detections:0");
|
|
const cv::Mat& in_boxes = onnx.at("detection_boxes:0");
|
|
const cv::Mat& in_scores = onnx.at("detection_scores:0");
|
|
const cv::Mat& in_classes = onnx.at("detection_classes:0");
|
|
// Configured outputs
|
|
cv::Mat& out_boxes = gapi.at("out1");
|
|
cv::Mat& out_classes = gapi.at("out2");
|
|
cv::Mat& out_scores = gapi.at("out3");
|
|
cv::Mat& out_num = gapi.at("out4");
|
|
// Simple copy for outputs
|
|
copyToOut(in_num, out_num);
|
|
copyToOut(in_boxes, out_boxes);
|
|
copyToOut(in_scores, out_scores);
|
|
copyToOut(in_classes, out_classes);
|
|
}
|
|
|
|
class ONNXtest : public ::testing::Test {
|
|
public:
|
|
std::string model_path;
|
|
size_t num_in, num_out;
|
|
std::vector<cv::Mat> out_gapi;
|
|
std::vector<cv::Mat> out_onnx;
|
|
cv::Mat in_mat1;
|
|
|
|
ONNXtest() {
|
|
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
|
|
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
|
|
out_gapi.resize(1);
|
|
out_onnx.resize(1);
|
|
// FIXME: All tests chek "random" image
|
|
// Ideally it should be a real image
|
|
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
|
}
|
|
|
|
template<typename T>
|
|
void infer(const std::vector<cv::Mat>& ins,
|
|
std::vector<cv::Mat>& outs) {
|
|
// Prepare session
|
|
session = Ort::Session(env, model_path.data(), session_options);
|
|
num_in = session.GetInputCount();
|
|
num_out = session.GetOutputCount();
|
|
GAPI_Assert(num_in == ins.size());
|
|
in_node_names.clear();
|
|
out_node_names.clear();
|
|
// Inputs Run params
|
|
std::vector<Ort::Value> in_tensors;
|
|
for(size_t i = 0; i < num_in; ++i) {
|
|
char* in_node_name_p = session.GetInputName(i, allocator);
|
|
in_node_names.push_back(std::string(in_node_name_p));
|
|
allocator.Free(in_node_name_p);
|
|
in_node_dims = toORT(ins[i].size);
|
|
in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info,
|
|
const_cast<T*>(ins[i].ptr<T>()),
|
|
ins[i].total(),
|
|
in_node_dims.data(),
|
|
in_node_dims.size()));
|
|
}
|
|
// Outputs Run params
|
|
for(size_t i = 0; i < num_out; ++i) {
|
|
char* out_node_name_p = session.GetOutputName(i, allocator);
|
|
out_node_names.push_back(std::string(out_node_name_p));
|
|
allocator.Free(out_node_name_p);
|
|
}
|
|
// Input/output order by names
|
|
const auto in_run_names = getCharNames(in_node_names);
|
|
const auto out_run_names = getCharNames(out_node_names);
|
|
// Run
|
|
auto result = session.Run(Ort::RunOptions{nullptr},
|
|
in_run_names.data(),
|
|
&in_tensors.front(),
|
|
num_in,
|
|
out_run_names.data(),
|
|
num_out);
|
|
// Copy outputs
|
|
GAPI_Assert(result.size() == num_out);
|
|
outs.resize(num_out);
|
|
for (size_t i = 0; i < num_out; ++i) {
|
|
const auto info = result[i].GetTensorTypeAndShapeInfo();
|
|
const auto shape = info.GetShape();
|
|
const auto type = info.GetElementType();
|
|
cv::Mat mt(std::vector<int>(shape.begin(), shape.end()), toCV(type),
|
|
reinterpret_cast<void*>(result[i].GetTensorMutableData<uint8_t*>()));
|
|
mt.copyTo(outs[i]);
|
|
}
|
|
}
|
|
// One input/output overload
|
|
template<typename T>
|
|
void infer(const cv::Mat& in, cv::Mat& out) {
|
|
std::vector<cv::Mat> result;
|
|
infer<T>({in}, result);
|
|
GAPI_Assert(result.size() == 1u);
|
|
out = result.front();
|
|
}
|
|
|
|
void validate() {
|
|
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
|
|
ASSERT_EQ(out_gapi.size(), out_onnx.size());
|
|
const auto size = out_gapi.size();
|
|
for (size_t i = 0; i < size; ++i) {
|
|
normAssert(out_onnx[i], out_gapi[i], "Test outputs");
|
|
}
|
|
}
|
|
|
|
void useModel(const std::string& model_name) {
|
|
model_path = findModel(model_name);
|
|
}
|
|
private:
|
|
Ort::Env env{nullptr};
|
|
Ort::MemoryInfo memory_info{nullptr};
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
Ort::SessionOptions session_options;
|
|
Ort::Session session{nullptr};
|
|
|
|
std::vector<int64_t> in_node_dims;
|
|
std::vector<std::string> in_node_names;
|
|
std::vector<std::string> out_node_names;
|
|
};
|
|
|
|
class ONNXClassificationTest : public ONNXtest {
|
|
public:
|
|
const cv::Scalar mean = { 0.485, 0.456, 0.406 };
|
|
const cv::Scalar std = { 0.229, 0.224, 0.225 };
|
|
|
|
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
|
const int new_h = 224;
|
|
const int new_w = 224;
|
|
cv::Mat tmp, cvt, rsz;
|
|
cv::resize(src, rsz, cv::Size(new_w, new_h));
|
|
rsz.convertTo(cvt, CV_32F, 1.f / 255);
|
|
tmp = (cvt - mean) / std;
|
|
toCHW(tmp, dst);
|
|
dst = dst.reshape(1, {1, 3, new_h, new_w});
|
|
}
|
|
};
|
|
|
|
class ONNXMediaFrameTest : public ONNXClassificationTest {
|
|
public:
|
|
const std::vector<cv::Rect> rois = {
|
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
|
cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}),
|
|
cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}),
|
|
};
|
|
cv::Mat m_in_y;
|
|
cv::Mat m_in_uv;
|
|
virtual void SetUp() {
|
|
cv::Size sz{640, 480};
|
|
m_in_y = initMatrixRandU(CV_8UC1, sz);
|
|
m_in_uv = initMatrixRandU(CV_8UC2, sz / 2);
|
|
}
|
|
};
|
|
|
|
class ONNXGRayScaleTest : public ONNXtest {
|
|
public:
|
|
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
|
const int new_h = 64;
|
|
const int new_w = 64;
|
|
cv::Mat cvc, rsz, cvt;
|
|
cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY);
|
|
cv::resize(cvc, rsz, cv::Size(new_w, new_h));
|
|
rsz.convertTo(cvt, CV_32F);
|
|
toCHW(cvt, dst);
|
|
dst = dst.reshape(1, {1, 1, new_h, new_w});
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
TEST_F(ONNXClassificationTest, Infer)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
// ONNX_API code
|
|
cv::Mat processed_mat;
|
|
preprocess(in_mat1, processed_mat);
|
|
infer<float>(processed_mat, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(in_mat1),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXtest, InferTensor)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
// Create tensor
|
|
// FIXME: Test cheks "random" image
|
|
// Ideally it should be a real image
|
|
const cv::Mat rand_mat = initMatrixRandU(CV_32FC3, cv::Size{224, 224});
|
|
const std::vector<int> dims = {1, rand_mat.channels(), rand_mat.rows, rand_mat.cols};
|
|
const cv::Mat tensor(dims, CV_32F, rand_mat.data);
|
|
// ONNX_API code
|
|
infer<float>(tensor, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path };
|
|
comp.apply(cv::gin(tensor),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXClassificationTest, InferROI)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const cv::Rect ROI(cv::Point{0, 0}, cv::Size{250, 250});
|
|
// ONNX_API code
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat1(ROI), roi_mat);
|
|
infer<float>(roi_mat, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GOpaque<cv::Rect> rect;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(in_mat1, ROI),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXClassificationTest, InferROIList)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const std::vector<cv::Rect> rois = {
|
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
|
};
|
|
// ONNX_API code
|
|
out_onnx.resize(rois.size());
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat1(rois[i]), roi_mat);
|
|
infer<float>(roi_mat, out_onnx[i]);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(in_mat1, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXClassificationTest, Infer2ROIList)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const std::vector<cv::Rect> rois = {
|
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
|
};
|
|
// ONNX_API code
|
|
out_onnx.resize(rois.size());
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat1(rois[i]), roi_mat);
|
|
infer<float>(roi_mat, out_onnx[i]);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(in_mat1, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXtest, InferDynamicInputTensor)
|
|
{
|
|
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
|
|
// Create tensor
|
|
// FIXME: Test cheks "random" image
|
|
// Ideally it should be a real image
|
|
const cv::Mat rand_mat = initMatrixRandU(CV_32FC3, cv::Size{416, 416});
|
|
const std::vector<int> dims = {1, rand_mat.channels(), rand_mat.rows, rand_mat.cols};
|
|
cv::Mat tensor(dims, CV_32F, rand_mat.data);
|
|
const cv::Mat in_tensor = tensor / 255.f;
|
|
// ONNX_API code
|
|
infer<float>(in_tensor, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<YoloNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo)
|
|
.cfgOutputLayers({"out"});
|
|
comp.apply(cv::gin(in_tensor),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXGRayScaleTest, InferImage)
|
|
{
|
|
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
|
|
// ONNX_API code
|
|
cv::Mat prep_mat;
|
|
preprocess(in_mat1, prep_mat);
|
|
infer<float>(prep_mat, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<EmotionNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
|
|
.cfgNormalize({ false }); // model accepts 0..255 range in FP32;
|
|
comp.apply(cv::gin(in_mat1),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXtest, InferMultOutput)
|
|
{
|
|
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
|
|
// ONNX_API code
|
|
const auto prep_mat = in_mat1.reshape(1, {1, in_mat1.rows, in_mat1.cols, in_mat1.channels()});
|
|
infer<uint8_t>({prep_mat}, out_onnx);
|
|
// G_API code
|
|
using SSDOut = std::tuple<cv::GMat, cv::GMat, cv::GMat, cv::GMat>;
|
|
G_API_NET(MobileNet, <SSDOut(cv::GMat)>, "ssd_mobilenet");
|
|
cv::GMat in;
|
|
cv::GMat out1, out2, out3, out4;
|
|
std::tie(out1, out2, out3, out4) = cv::gapi::infer<MobileNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3, out4));
|
|
auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
|
|
.cfgOutputLayers({"out1", "out2", "out3", "out4"})
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 100, 4}},
|
|
cv::GMatDesc{CV_32F, {1, 100}},
|
|
cv::GMatDesc{CV_32F, {1, 100}},
|
|
cv::GMatDesc{CV_32F, {1, 1}}}, remapSsdPorts);
|
|
out_gapi.resize(num_out);
|
|
comp.apply(cv::gin(in_mat1),
|
|
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2], out_gapi[3]),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferBGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
// ONNX_API code
|
|
cv::Mat processed_mat;
|
|
preprocess(in_mat1, processed_mat);
|
|
infer<float>(processed_mat, out_onnx.front());
|
|
// G_API code
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferYUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
cv::Mat processed_mat;
|
|
preprocess(pp, processed_mat);
|
|
infer<float>(processed_mat, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferROIBGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
|
// ONNX_API code
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat1(rois.front()), roi_mat);
|
|
infer<float>(roi_mat, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GOpaque<cv::Rect> rect;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame, rois.front()),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferROIYUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
cv::Mat roi_mat;
|
|
preprocess(pp(rois.front()), roi_mat);
|
|
infer<float>(roi_mat, out_onnx.front());
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GOpaque<cv::Rect> rect;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame, rois.front()),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferListBGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
|
// ONNX_API code
|
|
out_onnx.resize(rois.size());
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat1(rois[i]), roi_mat);
|
|
infer<float>(roi_mat, out_onnx[i]);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferListYUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
out_onnx.resize(rois.size());
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(pp(rois[i]), roi_mat);
|
|
infer<float>(roi_mat, out_onnx[i]);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferList2BGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
|
|
// ONNX_API code
|
|
out_onnx.resize(rois.size());
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat1(rois[i]), roi_mat);
|
|
infer<float>(roi_mat, out_onnx[i]);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrameTest, InferList2YUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
out_onnx.resize(rois.size());
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(pp(rois[i]), roi_mat);
|
|
infer<float>(roi_mat, out_onnx[i]);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
} // namespace opencv_test
|
|
|
|
#endif // HAVE_ONNX
|