opencv/modules/ocl/src/split_merge.cpp
niko 97156897b2 format files to ANSI C style with coolformat
change the download channels to oclchannles()
fix bugs of arithm functions
perf fix of bilateral
bug fix of split test case
add build_warps functions
2012-10-11 16:22:47 +08:00

421 lines
18 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
using namespace cv;
using namespace cv::ocl;
using namespace std;
using std::cout;
using std::endl;
////////////////////////////////////////////////////////////////////////
///////////////// oclMat merge and split ///////////////////////////////
////////////////////////////////////////////////////////////////////////
#if !defined (HAVE_OPENCL)
namespace cv
{
namespace ocl
{
void cv::ocl::merge(const oclMat *src_mat, size_t count, oclMat &dst_mat)
{
throw_nogpu();
}
void cv::ocl::merge(const vector<oclMat> &src_mat, oclMat &dst_mat)
{
throw_nogpu();
}
void cv::ocl::split(const oclMat &src, oclMat *dst)
{
throw_nogpu();
}
void cv::ocl::split(const oclMat &src, vector<oclMat> &dst)
{
throw_nogpu();
}
}
}
#else /* !defined (HAVE_OPENCL) */
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *merge_mat;
extern const char *split_mat;
}
}
namespace cv
{
namespace ocl
{
namespace split_merge
{
///////////////////////////////////////////////////////////
///////////////common/////////////////////////////////////
/////////////////////////////////////////////////////////
inline int divUp(int total, int grain)
{
return (total + grain - 1) / grain;
}
////////////////////////////////////////////////////////////////////////////
////////////////////merge//////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
void merge_vector_run_no_roi(const oclMat *mat_src, size_t n, oclMat &mat_dst)
{
Context *clCxt = mat_dst.clCxt;
int channels = mat_dst.oclchannels();
int depth = mat_dst.depth();
string kernelName = "merge_vector";
int indexes[4][7] = {{0, 0, 0, 0, 0, 0, 0},
{4, 4, 2, 2, 1, 1, 1},
{4, 4, 2, 2 , 1, 1, 1},
{4, 4, 2, 2, 1, 1, 1}
};
size_t index = indexes[channels - 1][mat_dst.depth()];
int cols = divUp(mat_dst.cols, index);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
divUp(mat_dst.rows, localThreads[1]) *localThreads[1],
1
};
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.step));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[0].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[0].step));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[1].step));
if(n >= 3)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
}
if(n >= 4)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[3].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[3].step));
}
openCLExecuteKernel(clCxt, &merge_mat, kernelName, globalThreads, localThreads, args, channels, depth);
}
void merge_vector_run(const oclMat *mat_src, size_t n, oclMat &mat_dst)
{
if(mat_dst.clCxt -> impl -> double_support == 0 && mat_dst.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
Context *clCxt = mat_dst.clCxt;
int channels = mat_dst.oclchannels();
int depth = mat_dst.depth();
string kernelName = "merge_vector";
int vector_lengths[4][7] = {{0, 0, 0, 0, 0, 0, 0},
{2, 2, 1, 1, 1, 1, 1},
{4, 4, 2, 2 , 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1}
};
size_t vector_length = vector_lengths[channels - 1][depth];
int offset_cols = (mat_dst.offset / mat_dst.elemSize()) & (vector_length - 1);
int cols = divUp(mat_dst.cols + offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
divUp(mat_dst.rows, localThreads[1]) *localThreads[1],
1
};
int dst_step1 = mat_dst.cols * mat_dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[0].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[0].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[0].offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[1].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[1].offset));
if(channels == 4)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].offset));
// if channel == 3, then the matrix will convert to channel =4
//if(n == 3)
// args.push_back( make_pair( sizeof(cl_int), (void *)&offset_cols));
if(n == 3)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].offset));
}
else if( n == 4)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[3].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[3].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[3].offset));
}
}
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1));
openCLExecuteKernel(clCxt, &merge_mat, kernelName, globalThreads, localThreads, args, channels, depth);
}
void merge(const oclMat *mat_src, size_t n, oclMat &mat_dst)
{
CV_Assert(mat_src);
CV_Assert(n > 0);
int depth = mat_src[0].depth();
Size size = mat_src[0].size();
int total_channels = 0;
for(size_t i = 0; i < n; ++i)
{
CV_Assert(depth == mat_src[i].depth());
CV_Assert(size == mat_src[i].size());
total_channels += mat_src[i].oclchannels();
}
CV_Assert(total_channels <= 4);
if(total_channels == 1)
{
mat_src[0].copyTo(mat_dst);
return;
}
mat_dst.create(size, CV_MAKETYPE(depth, total_channels));
merge_vector_run(mat_src, n, mat_dst);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////split/////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
void split_vector_run_no_roi(const oclMat &mat_src, oclMat *mat_dst)
{
Context *clCxt = mat_src.clCxt;
int channels = mat_src.oclchannels();
int depth = mat_src.depth();
string kernelName = "split_vector";
int indexes[4][7] = {{0, 0, 0, 0, 0, 0, 0},
{8, 8, 8, 8, 4, 4, 2},
{8, 8, 8, 8 , 4, 4, 4},
{4, 4, 2, 2, 1, 1, 1}
};
size_t index = indexes[channels - 1][mat_dst[0].depth()];
int cols = divUp(mat_src.cols, index);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
divUp(mat_src.rows, localThreads[1]) *localThreads[1],
1
};
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[0].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].step));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].step));
if(channels >= 3)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[2].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].step));
}
if(channels >= 4)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[3].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].step));
}
openCLExecuteKernel(clCxt, &split_mat, kernelName, globalThreads, localThreads, args, channels, depth);
}
void split_vector_run(const oclMat &mat_src, oclMat *mat_dst)
{
if(mat_src.clCxt -> impl -> double_support == 0 && mat_src.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
Context *clCxt = mat_src.clCxt;
int channels = mat_src.oclchannels();
int depth = mat_src.depth();
string kernelName = "split_vector";
int vector_lengths[4][7] = {{0, 0, 0, 0, 0, 0, 0},
{4, 4, 2, 2, 1, 1, 1},
{4, 4, 2, 2 , 1, 1, 1},
{4, 4, 2, 2, 1, 1, 1}
};
size_t vector_length = vector_lengths[channels - 1][mat_dst[0].depth()];
int max_offset_cols = 0;
for(int i = 0; i < channels; i++)
{
int offset_cols = (mat_dst[i].offset / mat_dst[i].elemSize()) & (vector_length - 1);
if(max_offset_cols < offset_cols)
max_offset_cols = offset_cols;
}
int cols = vector_length == 1 ? divUp(mat_src.cols, vector_length)
: divUp(mat_src.cols + max_offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
divUp(mat_src.rows, localThreads[1]) *localThreads[1], 1
};
int dst_step1 = mat_dst[0].cols * mat_dst[0].elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[0].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].offset));
if(channels >= 3)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[2].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].offset));
}
if(channels >= 4)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[3].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].offset));
}
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1));
openCLExecuteKernel(clCxt, &split_mat, kernelName, globalThreads, localThreads, args, channels, depth);
}
void split(const oclMat &mat_src, oclMat *mat_dst)
{
CV_Assert(mat_dst);
int depth = mat_src.depth();
int num_channels = mat_src.oclchannels();
Size size = mat_src.size();
if(num_channels == 1)
{
mat_src.copyTo(mat_dst[0]);
return;
}
int i;
for(i = 0; i < num_channels; i++)
mat_dst[i].create(size, CV_MAKETYPE(depth, 1));
split_vector_run(mat_src, mat_dst);
}
}
}
}
void cv::ocl::merge(const oclMat *src, size_t n, oclMat &dst)
{
split_merge::merge(src, n, dst);
}
void cv::ocl::merge(const vector<oclMat> &src, oclMat &dst)
{
split_merge::merge(&src[0], src.size(), dst);
}
void cv::ocl::split(const oclMat &src, oclMat *dst)
{
split_merge::split(src, dst);
}
void cv::ocl::split(const oclMat &src, vector<oclMat> &dst)
{
dst.resize(src.oclchannels());
if(src.oclchannels() > 0)
split_merge::split(src, &dst[0]);
}
#endif /* !defined (HAVE_OPENCL) */