mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 04:00:30 +08:00
c849492dfa
initialize HOG after CUDA device switch
445 lines
15 KiB
C++
445 lines
15 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
using namespace cvtest;
|
|
|
|
//#define DUMP
|
|
|
|
class HogForTest : public cv::gpu::HOGDescriptor
|
|
{
|
|
public:
|
|
cv::gpu::GpuMat getBlockHists() const
|
|
{
|
|
return block_hists;
|
|
}
|
|
|
|
void computeBlockHistograms(const cv::gpu::GpuMat& img)
|
|
{
|
|
cv::gpu::HOGDescriptor::computeBlockHistograms(img);
|
|
}
|
|
};
|
|
|
|
struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
cv::Ptr<HogForTest> hog;
|
|
|
|
#ifdef DUMP
|
|
std::ofstream f;
|
|
#else
|
|
std::ifstream f;
|
|
#endif
|
|
|
|
int wins_per_img_x;
|
|
int wins_per_img_y;
|
|
int blocks_per_win_x;
|
|
int blocks_per_win_y;
|
|
int block_hist_size;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
hog = new HogForTest;
|
|
}
|
|
|
|
#ifdef DUMP
|
|
void dump(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
|
|
{
|
|
f.write((char*)&blockHists.rows, sizeof(blockHists.rows));
|
|
f.write((char*)&blockHists.cols, sizeof(blockHists.cols));
|
|
|
|
for (int i = 0; i < blockHists.rows; ++i)
|
|
{
|
|
for (int j = 0; j < blockHists.cols; ++j)
|
|
{
|
|
float val = blockHists.at<float>(i, j);
|
|
f.write((char*)&val, sizeof(val));
|
|
}
|
|
}
|
|
|
|
int nlocations = locations.size();
|
|
f.write((char*)&nlocations, sizeof(nlocations));
|
|
|
|
for (int i = 0; i < locations.size(); ++i)
|
|
f.write((char*)&locations[i], sizeof(locations[i]));
|
|
}
|
|
#else
|
|
void compare(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
|
|
{
|
|
int rows, cols;
|
|
f.read((char*)&rows, sizeof(rows));
|
|
f.read((char*)&cols, sizeof(cols));
|
|
ASSERT_EQ(rows, blockHists.rows);
|
|
ASSERT_EQ(cols, blockHists.cols);
|
|
|
|
for (int i = 0; i < blockHists.rows; ++i)
|
|
{
|
|
for (int j = 0; j < blockHists.cols; ++j)
|
|
{
|
|
float val;
|
|
f.read((char*)&val, sizeof(val));
|
|
ASSERT_NEAR(val, blockHists.at<float>(i, j), 1e-3);
|
|
}
|
|
}
|
|
|
|
int nlocations;
|
|
f.read((char*)&nlocations, sizeof(nlocations));
|
|
ASSERT_EQ(nlocations, static_cast<int>(locations.size()));
|
|
|
|
for (int i = 0; i < nlocations; ++i)
|
|
{
|
|
cv::Point location;
|
|
f.read((char*)&location, sizeof(location));
|
|
ASSERT_EQ(location, locations[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void testDetect(const cv::Mat& img)
|
|
{
|
|
hog->gamma_correction = false;
|
|
hog->setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
|
|
|
std::vector<cv::Point> locations;
|
|
|
|
// Test detect
|
|
hog->detect(loadMat(img), locations, 0);
|
|
|
|
#ifdef DUMP
|
|
dump(cv::Mat(hog->getBlockHist()), locations);
|
|
#else
|
|
compare(cv::Mat(hog->getBlockHists()), locations);
|
|
#endif
|
|
|
|
// Test detect on smaller image
|
|
cv::Mat img2;
|
|
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
|
|
hog->detect(loadMat(img2), locations, 0);
|
|
|
|
#ifdef DUMP
|
|
dump(cv::Mat(hog->getBlockHist()), locations);
|
|
#else
|
|
compare(cv::Mat(hog->getBlockHists()), locations);
|
|
#endif
|
|
|
|
// Test detect on greater image
|
|
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
|
|
hog->detect(loadMat(img2), locations, 0);
|
|
|
|
#ifdef DUMP
|
|
dump(cv::Mat(hog->getBlockHist()), locations);
|
|
#else
|
|
compare(cv::Mat(hog->getBlockHists()), locations);
|
|
#endif
|
|
}
|
|
|
|
// Does not compare border value, as interpolation leads to delta
|
|
void compare_inner_parts(cv::Mat d1, cv::Mat d2)
|
|
{
|
|
for (int i = 1; i < blocks_per_win_y - 1; ++i)
|
|
for (int j = 1; j < blocks_per_win_x - 1; ++j)
|
|
for (int k = 0; k < block_hist_size; ++k)
|
|
{
|
|
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
|
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
|
ASSERT_FLOAT_EQ(a, b);
|
|
}
|
|
}
|
|
};
|
|
|
|
// desabled while resize does not fixed
|
|
GPU_TEST_P(HOG, DISABLED_Detect)
|
|
{
|
|
cv::Mat img_rgb = readImage("hog/road.png");
|
|
ASSERT_FALSE(img_rgb.empty());
|
|
|
|
#ifdef DUMP
|
|
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
|
ASSERT_TRUE(f.is_open());
|
|
#else
|
|
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
|
ASSERT_TRUE(f.is_open());
|
|
#endif
|
|
|
|
// Test on color image
|
|
cv::Mat img;
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
testDetect(img);
|
|
|
|
// Test on gray image
|
|
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
|
testDetect(img);
|
|
|
|
f.close();
|
|
}
|
|
|
|
GPU_TEST_P(HOG, GetDescriptors)
|
|
{
|
|
// Load image (e.g. train data, composed from windows)
|
|
cv::Mat img_rgb = readImage("hog/train_data.png");
|
|
ASSERT_FALSE(img_rgb.empty());
|
|
|
|
// Convert to C4
|
|
cv::Mat img;
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
|
|
cv::gpu::GpuMat d_img(img);
|
|
|
|
// Convert train images into feature vectors (train table)
|
|
cv::gpu::GpuMat descriptors, descriptors_by_cols;
|
|
hog->getDescriptors(d_img, hog->win_size, descriptors, cv::gpu::HOGDescriptor::DESCR_FORMAT_ROW_BY_ROW);
|
|
hog->getDescriptors(d_img, hog->win_size, descriptors_by_cols, cv::gpu::HOGDescriptor::DESCR_FORMAT_COL_BY_COL);
|
|
|
|
// Check size of the result train table
|
|
wins_per_img_x = 3;
|
|
wins_per_img_y = 2;
|
|
blocks_per_win_x = 7;
|
|
blocks_per_win_y = 15;
|
|
block_hist_size = 36;
|
|
cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
|
|
wins_per_img_x * wins_per_img_y);
|
|
ASSERT_EQ(descr_size_expected, descriptors.size());
|
|
|
|
// Check both formats of output descriptors are handled correctly
|
|
cv::Mat dr(descriptors);
|
|
cv::Mat dc(descriptors_by_cols);
|
|
for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
|
|
{
|
|
const float* l = dr.rowRange(i, i + 1).ptr<float>();
|
|
const float* r = dc.rowRange(i, i + 1).ptr<float>();
|
|
for (int y = 0; y < blocks_per_win_y; ++y)
|
|
for (int x = 0; x < blocks_per_win_x; ++x)
|
|
for (int k = 0; k < block_hist_size; ++k)
|
|
ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
|
|
r[(x * blocks_per_win_y + y) * block_hist_size + k]);
|
|
}
|
|
|
|
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
|
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
|
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
|
works good, it can be checked in the gpu_hog sample */
|
|
|
|
img_rgb = readImage("hog/positive1.png");
|
|
ASSERT_TRUE(!img_rgb.empty());
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
hog->computeBlockHistograms(cv::gpu::GpuMat(img));
|
|
// Everything is fine with interpolation for left top subimage
|
|
ASSERT_EQ(0.0, cv::norm(cv::Mat(hog->getBlockHists()), (cv::Mat)descriptors.rowRange(0, 1)));
|
|
|
|
img_rgb = readImage("hog/positive2.png");
|
|
ASSERT_TRUE(!img_rgb.empty());
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
hog->computeBlockHistograms(cv::gpu::GpuMat(img));
|
|
compare_inner_parts(cv::Mat(hog->getBlockHists()), cv::Mat(descriptors.rowRange(1, 2)));
|
|
|
|
img_rgb = readImage("hog/negative1.png");
|
|
ASSERT_TRUE(!img_rgb.empty());
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
hog->computeBlockHistograms(cv::gpu::GpuMat(img));
|
|
compare_inner_parts(cv::Mat(hog->getBlockHists()), cv::Mat(descriptors.rowRange(2, 3)));
|
|
|
|
img_rgb = readImage("hog/negative2.png");
|
|
ASSERT_TRUE(!img_rgb.empty());
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
hog->computeBlockHistograms(cv::gpu::GpuMat(img));
|
|
compare_inner_parts(cv::Mat(hog->getBlockHists()), cv::Mat(descriptors.rowRange(3, 4)));
|
|
|
|
img_rgb = readImage("hog/positive3.png");
|
|
ASSERT_TRUE(!img_rgb.empty());
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
hog->computeBlockHistograms(cv::gpu::GpuMat(img));
|
|
compare_inner_parts(cv::Mat(hog->getBlockHists()), cv::Mat(descriptors.rowRange(4, 5)));
|
|
|
|
img_rgb = readImage("hog/negative3.png");
|
|
ASSERT_TRUE(!img_rgb.empty());
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
hog->computeBlockHistograms(cv::gpu::GpuMat(img));
|
|
compare_inner_parts(cv::Mat(hog->getBlockHists()), cv::Mat(descriptors.rowRange(5, 6)));
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, ALL_DEVICES);
|
|
|
|
//============== caltech hog tests =====================//
|
|
|
|
struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string> >
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
cv::Mat img;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(img.empty());
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(CalTech, HOG)
|
|
{
|
|
cv::gpu::GpuMat d_img(img);
|
|
cv::Mat markedImage(img.clone());
|
|
|
|
cv::gpu::HOGDescriptor d_hog;
|
|
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
|
d_hog.nlevels = d_hog.nlevels + 32;
|
|
|
|
std::vector<cv::Rect> found_locations;
|
|
d_hog.detectMultiScale(d_img, found_locations);
|
|
|
|
#if defined (LOG_CASCADE_STATISTIC)
|
|
for (int i = 0; i < (int)found_locations.size(); i++)
|
|
{
|
|
cv::Rect r = found_locations[i];
|
|
|
|
std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl;
|
|
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
|
|
}
|
|
|
|
cv::imshow("Res", markedImage); cv::waitKey();
|
|
#endif
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(detect, CalTech, testing::Combine(ALL_DEVICES,
|
|
::testing::Values<std::string>("caltech/image_00000009_0.png", "caltech/image_00000032_0.png",
|
|
"caltech/image_00000165_0.png", "caltech/image_00000261_0.png", "caltech/image_00000469_0.png",
|
|
"caltech/image_00000527_0.png", "caltech/image_00000574_0.png")));
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
/// LBP classifier
|
|
|
|
PARAM_TEST_CASE(LBP_Read_classifier, cv::gpu::DeviceInfo, int)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(LBP_Read_classifier, Accuracy)
|
|
{
|
|
cv::gpu::CascadeClassifier_GPU classifier;
|
|
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
|
|
ASSERT_TRUE(classifier.load(classifierXmlPath));
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_Read_classifier,
|
|
testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
|
|
|
|
|
|
PARAM_TEST_CASE(LBP_classify, cv::gpu::DeviceInfo, int)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(LBP_classify, Accuracy)
|
|
{
|
|
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
|
|
std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png";
|
|
|
|
cv::CascadeClassifier cpuClassifier(classifierXmlPath);
|
|
ASSERT_FALSE(cpuClassifier.empty());
|
|
|
|
cv::Mat image = cv::imread(imagePath);
|
|
image = image.colRange(0, image.cols/2);
|
|
cv::Mat grey;
|
|
cvtColor(image, grey, CV_BGR2GRAY);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
std::vector<cv::Rect> rects;
|
|
cpuClassifier.detectMultiScale(grey, rects);
|
|
cv::Mat markedImage = image.clone();
|
|
|
|
std::vector<cv::Rect>::iterator it = rects.begin();
|
|
for (; it != rects.end(); ++it)
|
|
cv::rectangle(markedImage, *it, CV_RGB(0, 0, 255));
|
|
|
|
cv::gpu::CascadeClassifier_GPU gpuClassifier;
|
|
ASSERT_TRUE(gpuClassifier.load(classifierXmlPath));
|
|
|
|
cv::gpu::GpuMat gpu_rects;
|
|
cv::gpu::GpuMat tested(grey);
|
|
int count = gpuClassifier.detectMultiScale(tested, gpu_rects);
|
|
|
|
#if defined (LOG_CASCADE_STATISTIC)
|
|
cv::Mat downloaded(gpu_rects);
|
|
const cv::Rect* faces = downloaded.ptr<cv::Rect>();
|
|
for (int i = 0; i < count; i++)
|
|
{
|
|
cv::Rect r = faces[i];
|
|
|
|
std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl;
|
|
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
|
|
}
|
|
#endif
|
|
|
|
#if defined (LOG_CASCADE_STATISTIC)
|
|
cv::imshow("Res", markedImage); cv::waitKey();
|
|
#endif
|
|
(void)count;
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify,
|
|
testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
|
|
|
|
#endif // HAVE_CUDA
|