opencv/modules/core/test/test_arithm.cpp
Vadim Pisarevsky 518486ed3d
Added new data types to cv::Mat & UMat (#23865)
* started working on adding 32u, 64u, 64s, bool and 16bf types to OpenCV

* core & imgproc tests seem to pass

* fixed a few compile errors and test failures on macOS x86

* hopefully fixed some compile problems and test failures

* fixed some more warnings and test failures

* trying to fix small deviations in perf_core & perf_imgproc by revering randf_64f to exact version used before

* trying to fix behavior of the new OpenCV with old plugins; there is (quite strong) assumption that video capture would give us frames with depth == CV_8U (0) or CV_16U (2). If depth is > 7 then it means that the plugin is built with the old OpenCV. It needs to be recompiled, of course and then this hack can be removed.

* try to repair the case when target arch does not have FP64 SIMD

* 1. fixed bug in itoa() found by alalek
2. restored ==, !=, > and < univ. intrinsics on ARM32/ARM64.
2023-08-04 10:50:03 +03:00

2745 lines
83 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "ref_reduce_arg.impl.hpp"
#include <algorithm>
namespace opencv_test { namespace {
const int ARITHM_NTESTS = 1000;
const int ARITHM_RNG_SEED = -1;
const int ARITHM_MAX_CHANNELS = 4;
const int ARITHM_MAX_NDIMS = 4;
const int ARITHM_MAX_SIZE_LOG = 10;
struct BaseElemWiseOp
{
enum { FIX_ALPHA=1, FIX_BETA=2, FIX_GAMMA=4, REAL_GAMMA=8, SUPPORT_MASK=16, SCALAR_OUTPUT=32, SUPPORT_MULTICHANNELMASK=64 };
BaseElemWiseOp(int _ninputs, int _flags, double _alpha, double _beta,
Scalar _gamma=Scalar::all(0), int _context=1)
: ninputs(_ninputs), flags(_flags), alpha(_alpha), beta(_beta), gamma(_gamma), context(_context) {}
BaseElemWiseOp() { flags = 0; alpha = beta = 0; gamma = Scalar::all(0); ninputs = 0; context = 1; }
virtual ~BaseElemWiseOp() {}
virtual void op(const vector<Mat>&, Mat&, const Mat&) {}
virtual void refop(const vector<Mat>&, Mat&, const Mat&) {}
virtual void getValueRange(int depth, double& minval, double& maxval)
{
minval = depth < CV_32S ? cvtest::getMinVal(depth) : depth == CV_32S ? -1000000 : -1000.;
maxval = depth < CV_32S ? cvtest::getMaxVal(depth) : depth == CV_32S ? 1000000 : 1000.;
}
virtual void getRandomSize(RNG& rng, vector<int>& size)
{
cvtest::randomSize(rng, 2, ARITHM_MAX_NDIMS, ARITHM_MAX_SIZE_LOG, size);
}
virtual int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL_BUT_8S, 1,
ninputs > 1 ? ARITHM_MAX_CHANNELS : 4);
}
virtual double getMaxErr(int depth)
{
return depth < CV_32F || depth == CV_32U || depth == CV_64U || depth == CV_64S ? 1 :
depth == CV_16F || depth == CV_16BF ? 1e-2 : depth == CV_32F ? 1e-5 : 1e-12;
}
virtual void generateScalars(int depth, RNG& rng)
{
const double m = 3.;
if( !(flags & FIX_ALPHA) )
{
alpha = exp(rng.uniform(-0.5, 0.1)*m*2*CV_LOG2);
alpha *= rng.uniform(0, 2) ? 1 : -1;
}
if( !(flags & FIX_BETA) )
{
beta = exp(rng.uniform(-0.5, 0.1)*m*2*CV_LOG2);
beta *= rng.uniform(0, 2) ? 1 : -1;
}
if( !(flags & FIX_GAMMA) )
{
for( int i = 0; i < 4; i++ )
{
gamma[i] = exp(rng.uniform(-1, 6)*m*CV_LOG2);
gamma[i] *= rng.uniform(0, 2) ? 1 : -1;
}
if( flags & REAL_GAMMA )
gamma = Scalar::all(gamma[0]);
}
if( depth == CV_32F )
{
Mat fl, db;
db = Mat(1, 1, CV_64F, &alpha);
db.convertTo(fl, CV_32F);
fl.convertTo(db, CV_64F);
db = Mat(1, 1, CV_64F, &beta);
db.convertTo(fl, CV_32F);
fl.convertTo(db, CV_64F);
db = Mat(1, 4, CV_64F, &gamma[0]);
db.convertTo(fl, CV_32F);
fl.convertTo(db, CV_64F);
}
}
int ninputs;
int flags;
double alpha;
double beta;
Scalar gamma;
int context;
};
static const _OutputArray::DepthMask baseArithmTypeMask =
_OutputArray::DepthMask(
_OutputArray::DEPTH_MASK_8U |
_OutputArray::DEPTH_MASK_16U |
_OutputArray::DEPTH_MASK_16S |
_OutputArray::DEPTH_MASK_32S |
_OutputArray::DEPTH_MASK_32F |
_OutputArray::DEPTH_MASK_64F);
struct BaseArithmOp : public BaseElemWiseOp
{
BaseArithmOp(int _ninputs, int _flags, double _alpha, double _beta, Scalar _gamma=Scalar::all(0))
: BaseElemWiseOp(_ninputs, _flags, _alpha, _beta, _gamma) {}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, baseArithmTypeMask, 1,
ninputs > 1 ? ARITHM_MAX_CHANNELS : 4);
}
};
struct BaseAddOp : public BaseArithmOp
{
BaseAddOp(int _ninputs, int _flags, double _alpha, double _beta, Scalar _gamma=Scalar::all(0))
: BaseArithmOp(_ninputs, _flags, _alpha, _beta, _gamma) {}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
Mat temp;
if( !mask.empty() )
{
cvtest::add(src[0], alpha, src.size() > 1 ? src[1] : Mat(), beta, gamma, temp, src[0].type());
cvtest::copy(temp, dst, mask);
}
else
cvtest::add(src[0], alpha, src.size() > 1 ? src[1] : Mat(), beta, gamma, dst, src[0].type());
}
};
struct AddOp : public BaseAddOp
{
AddOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
if( mask.empty() )
cv::add(src[0], src[1], dst);
else
cv::add(src[0], src[1], dst, mask);
}
};
struct SubOp : public BaseAddOp
{
SubOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, -1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
if( mask.empty() )
cv::subtract(src[0], src[1], dst);
else
cv::subtract(src[0], src[1], dst, mask);
}
};
struct AddSOp : public BaseAddOp
{
AddSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, 1, 0, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
if( mask.empty() )
cv::add(src[0], gamma, dst);
else
cv::add(src[0], gamma, dst, mask);
}
};
struct SubRSOp : public BaseAddOp
{
SubRSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, -1, 0, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
if( mask.empty() )
cv::subtract(gamma, src[0], dst);
else
cv::subtract(gamma, src[0], dst, mask);
}
};
struct ScaleAddOp : public BaseAddOp
{
ScaleAddOp() : BaseAddOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::scaleAdd(src[0], alpha, src[1], dst);
}
double getMaxErr(int depth)
{
return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-4 : 1e-12;
}
};
struct AddWeightedOp : public BaseAddOp
{
AddWeightedOp() : BaseAddOp(2, REAL_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::addWeighted(src[0], alpha, src[1], beta, gamma[0], dst);
}
double getMaxErr(int depth)
{
return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-10;
}
};
struct MulOp : public BaseArithmOp
{
MulOp() : BaseArithmOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void getValueRange(int depth, double& minval, double& maxval)
{
minval = depth < CV_32S ? cvtest::getMinVal(depth) : depth == CV_32S ? -1000000 : -1000.;
maxval = depth < CV_32S ? cvtest::getMaxVal(depth) : depth == CV_32S ? 1000000 : 1000.;
minval = std::max(minval, -30000.);
maxval = std::min(maxval, 30000.);
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::multiply(src[0], src[1], dst, alpha);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::multiply(src[0], src[1], dst, alpha);
}
double getMaxErr(int depth)
{
return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-12;
}
};
struct DivOp : public BaseArithmOp
{
DivOp() : BaseArithmOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::divide(src[0], src[1], dst, alpha);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::divide(src[0], src[1], dst, alpha);
}
double getMaxErr(int depth)
{
return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-12;
}
};
struct RecipOp : public BaseArithmOp
{
RecipOp() : BaseArithmOp(1, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::divide(alpha, src[0], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::divide(Mat(), src[0], dst, alpha);
}
double getMaxErr(int depth)
{
return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-12;
}
};
struct AbsDiffOp : public BaseAddOp
{
AbsDiffOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, -1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
absdiff(src[0], src[1], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::add(src[0], 1, src[1], -1, Scalar::all(0), dst, src[0].type(), true);
}
};
struct AbsDiffSOp : public BaseAddOp
{
AbsDiffSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA, 1, 0, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
absdiff(src[0], gamma, dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::add(src[0], 1, Mat(), 0, -gamma, dst, src[0].type(), true);
}
};
struct LogicOp : public BaseElemWiseOp
{
LogicOp(char _opcode) : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)), opcode(_opcode) {}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
if( opcode == '&' )
cv::bitwise_and(src[0], src[1], dst, mask);
else if( opcode == '|' )
cv::bitwise_or(src[0], src[1], dst, mask);
else
cv::bitwise_xor(src[0], src[1], dst, mask);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
Mat temp;
if( !mask.empty() )
{
cvtest::logicOp(src[0], src[1], temp, opcode);
cvtest::copy(temp, dst, mask);
}
else
cvtest::logicOp(src[0], src[1], dst, opcode);
}
double getMaxErr(int)
{
return 0;
}
char opcode;
};
struct LogicSOp : public BaseElemWiseOp
{
LogicSOp(char _opcode)
: BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+(_opcode != '~' ? SUPPORT_MASK : 0), 1, 1, Scalar::all(0)), opcode(_opcode) {}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
if( opcode == '&' )
cv::bitwise_and(src[0], gamma, dst, mask);
else if( opcode == '|' )
cv::bitwise_or(src[0], gamma, dst, mask);
else if( opcode == '^' )
cv::bitwise_xor(src[0], gamma, dst, mask);
else
cv::bitwise_not(src[0], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
Mat temp;
if( !mask.empty() )
{
cvtest::logicOp(src[0], gamma, temp, opcode);
cvtest::copy(temp, dst, mask);
}
else
cvtest::logicOp(src[0], gamma, dst, opcode);
}
double getMaxErr(int)
{
return 0;
}
char opcode;
};
struct MinOp : public BaseArithmOp
{
MinOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::min(src[0], src[1], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::min(src[0], src[1], dst);
}
double getMaxErr(int)
{
return 0;
}
};
struct MaxOp : public BaseArithmOp
{
MaxOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::max(src[0], src[1], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::max(src[0], src[1], dst);
}
double getMaxErr(int)
{
return 0;
}
};
struct MinSOp : public BaseArithmOp
{
MinSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::min(src[0], gamma[0], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::min(src[0], gamma[0], dst);
}
double getMaxErr(int)
{
return 0;
}
};
struct MaxSOp : public BaseArithmOp
{
MaxSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::max(src[0], gamma[0], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::max(src[0], gamma[0], dst);
}
double getMaxErr(int)
{
return 0;
}
};
struct CmpOp : public BaseArithmOp
{
CmpOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) { cmpop = 0; }
void generateScalars(int depth, RNG& rng)
{
BaseElemWiseOp::generateScalars(depth, rng);
cmpop = rng.uniform(0, 6);
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::compare(src[0], src[1], dst, cmpop);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::compare(src[0], src[1], dst, cmpop);
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, baseArithmTypeMask, 1, 1);
}
double getMaxErr(int)
{
return 0;
}
int cmpop;
};
struct CmpSOp : public BaseArithmOp
{
CmpSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) { cmpop = 0; }
void generateScalars(int depth, RNG& rng)
{
BaseElemWiseOp::generateScalars(depth, rng);
cmpop = rng.uniform(0, 6);
if( depth < CV_32F )
gamma[0] = cvRound(gamma[0]);
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::compare(src[0], gamma[0], dst, cmpop);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::compare(src[0], gamma[0], dst, cmpop);
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, baseArithmTypeMask, 1, 1);
}
double getMaxErr(int)
{
return 0;
}
int cmpop;
};
struct CopyOp : public BaseElemWiseOp
{
CopyOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SUPPORT_MULTICHANNELMASK, 1, 1, Scalar::all(0)) { }
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
src[0].copyTo(dst, mask);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
cvtest::copy(src[0], dst, mask);
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
}
double getMaxErr(int)
{
return 0;
}
};
struct SetOp : public BaseElemWiseOp
{
SetOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+SUPPORT_MASK+SUPPORT_MULTICHANNELMASK, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>&, Mat& dst, const Mat& mask)
{
dst.setTo(gamma, mask);
}
void refop(const vector<Mat>&, Mat& dst, const Mat& mask)
{
cvtest::set(dst, gamma, mask);
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
}
double getMaxErr(int)
{
return 0;
}
};
template<typename _Tp, typename _WTp> static void
inRangeS_(const _Tp* src, const _WTp* a, const _WTp* b, uchar* dst, size_t total, int cn)
{
size_t i;
int c;
for( i = 0; i < total; i++ )
{
_Tp val = src[i*cn];
dst[i] = (a[0] <= val && val <= b[0]) ? uchar(255) : 0;
}
for( c = 1; c < cn; c++ )
{
for( i = 0; i < total; i++ )
{
_Tp val = src[i*cn + c];
dst[i] = a[c] <= val && val <= b[c] ? dst[i] : 0;
}
}
}
template<typename _Tp> static void inRange_(const _Tp* src, const _Tp* a, const _Tp* b, uchar* dst, size_t total, int cn)
{
size_t i;
int c;
for( i = 0; i < total; i++ )
{
_Tp val = src[i*cn];
dst[i] = a[i*cn] <= val && val <= b[i*cn] ? 255 : 0;
}
for( c = 1; c < cn; c++ )
{
for( i = 0; i < total; i++ )
{
_Tp val = src[i*cn + c];
dst[i] = a[i*cn + c] <= val && val <= b[i*cn + c] ? dst[i] : 0;
}
}
}
namespace reference {
static void inRange(const Mat& src, const Mat& lb, const Mat& rb, Mat& dst)
{
CV_Assert( src.type() == lb.type() && src.type() == rb.type() &&
src.size == lb.size && src.size == rb.size );
dst.create( src.dims, &src.size[0], CV_8U );
const Mat *arrays[]={&src, &lb, &rb, &dst, 0};
Mat planes[4];
NAryMatIterator it(arrays, planes);
size_t total = planes[0].total();
size_t i, nplanes = it.nplanes;
int depth = src.depth(), cn = src.channels();
for( i = 0; i < nplanes; i++, ++it )
{
const uchar* sptr = planes[0].ptr();
const uchar* aptr = planes[1].ptr();
const uchar* bptr = planes[2].ptr();
uchar* dptr = planes[3].ptr();
switch( depth )
{
case CV_8U:
inRange_((const uchar*)sptr, (const uchar*)aptr, (const uchar*)bptr, dptr, total, cn);
break;
case CV_8S:
inRange_((const schar*)sptr, (const schar*)aptr, (const schar*)bptr, dptr, total, cn);
break;
case CV_16U:
inRange_((const ushort*)sptr, (const ushort*)aptr, (const ushort*)bptr, dptr, total, cn);
break;
case CV_16S:
inRange_((const short*)sptr, (const short*)aptr, (const short*)bptr, dptr, total, cn);
break;
case CV_32S:
inRange_((const int*)sptr, (const int*)aptr, (const int*)bptr, dptr, total, cn);
break;
case CV_32F:
inRange_((const float*)sptr, (const float*)aptr, (const float*)bptr, dptr, total, cn);
break;
case CV_64F:
inRange_((const double*)sptr, (const double*)aptr, (const double*)bptr, dptr, total, cn);
break;
default:
CV_Error(CV_StsUnsupportedFormat, "");
}
}
}
static void inRangeS(const Mat& src, const Scalar& lb, const Scalar& rb, Mat& dst)
{
dst.create( src.dims, &src.size[0], CV_8U );
const Mat *arrays[]={&src, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
size_t total = planes[0].total();
size_t i, nplanes = it.nplanes;
int depth = src.depth(), cn = src.channels();
union { double d[4]; float f[4]; int i[4];} lbuf, rbuf;
int wtype = CV_MAKETYPE(depth <= CV_32S ? CV_32S : depth, cn);
scalarToRawData(lb, lbuf.d, wtype, cn);
scalarToRawData(rb, rbuf.d, wtype, cn);
for( i = 0; i < nplanes; i++, ++it )
{
const uchar* sptr = planes[0].ptr();
uchar* dptr = planes[1].ptr();
switch( depth )
{
case CV_8U:
inRangeS_((const uchar*)sptr, lbuf.i, rbuf.i, dptr, total, cn);
break;
case CV_8S:
inRangeS_((const schar*)sptr, lbuf.i, rbuf.i, dptr, total, cn);
break;
case CV_16U:
inRangeS_((const ushort*)sptr, lbuf.i, rbuf.i, dptr, total, cn);
break;
case CV_16S:
inRangeS_((const short*)sptr, lbuf.i, rbuf.i, dptr, total, cn);
break;
case CV_32S:
inRangeS_((const int*)sptr, lbuf.i, rbuf.i, dptr, total, cn);
break;
case CV_32F:
inRangeS_((const float*)sptr, lbuf.f, rbuf.f, dptr, total, cn);
break;
case CV_64F:
inRangeS_((const double*)sptr, lbuf.d, rbuf.d, dptr, total, cn);
break;
default:
CV_Error(CV_StsUnsupportedFormat, "");
}
}
}
} // namespace
CVTEST_GUARD_SYMBOL(inRange);
struct InRangeSOp : public BaseArithmOp
{
InRangeSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::inRange(src[0], gamma, gamma1, dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
reference::inRangeS(src[0], gamma, gamma1, dst);
}
double getMaxErr(int)
{
return 0;
}
void generateScalars(int depth, RNG& rng)
{
BaseElemWiseOp::generateScalars(depth, rng);
Scalar temp = gamma;
BaseElemWiseOp::generateScalars(depth, rng);
for( int i = 0; i < 4; i++ )
{
gamma1[i] = std::max(gamma[i], temp[i]);
gamma[i] = std::min(gamma[i], temp[i]);
}
}
Scalar gamma1;
};
struct InRangeOp : public BaseArithmOp
{
InRangeOp() : BaseArithmOp(3, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
Mat lb, rb;
cvtest::min(src[1], src[2], lb);
cvtest::max(src[1], src[2], rb);
cv::inRange(src[0], lb, rb, dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
Mat lb, rb;
cvtest::min(src[1], src[2], lb);
cvtest::max(src[1], src[2], rb);
reference::inRange(src[0], lb, rb, dst);
}
double getMaxErr(int)
{
return 0;
}
};
struct ConvertScaleOp : public BaseElemWiseOp
{
ConvertScaleOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)), ddepth(0) { }
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
src[0].convertTo(dst, ddepth, alpha, gamma[0]);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::convert(src[0], dst, CV_MAKETYPE(ddepth, src[0].channels()), alpha, gamma[0]);
}
int getRandomType(RNG& rng)
{
int srctype = cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS);
ddepth = cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, 1);
return srctype;
}
double getMaxErr(int)
{
return ddepth <= CV_32S || ddepth == CV_32U || ddepth == CV_64U || ddepth == CV_64S ? 2 : ddepth == CV_64F ? 1e-12 : ddepth == CV_Bool ? 0 : ddepth == CV_16BF ? 1e-2 : 2e-3;
}
void generateScalars(int depth, RNG& rng)
{
if( rng.uniform(0, 2) )
BaseElemWiseOp::generateScalars(depth, rng);
else
{
alpha = 1;
gamma = Scalar::all(0);
}
}
int ddepth;
};
struct ConvertScaleFp16Op : public BaseElemWiseOp
{
ConvertScaleFp16Op() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)), nextRange(0) { }
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
Mat m;
convertFp16(src[0], m);
convertFp16(m, dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::copy(src[0], dst);
}
int getRandomType(RNG&)
{
// 0: FP32 -> FP16 -> FP32
// 1: FP16 -> FP32 -> FP16
int srctype = (nextRange & 1) == 0 ? CV_32F : CV_16S;
return srctype;
}
void getValueRange(int, double& minval, double& maxval)
{
// 0: FP32 -> FP16 -> FP32
// 1: FP16 -> FP32 -> FP16
if( (nextRange & 1) == 0 )
{
// largest integer number that fp16 can express exactly
maxval = 2048.f;
minval = -maxval;
}
else
{
// 0: positive number range
// 1: negative number range
if( (nextRange & 2) == 0 )
{
minval = 0; // 0x0000 +0
maxval = 31744; // 0x7C00 +Inf
}
else
{
minval = -32768; // 0x8000 -0
maxval = -1024; // 0xFC00 -Inf
}
}
}
double getMaxErr(int)
{
return 0.5f;
}
void generateScalars(int, RNG& rng)
{
nextRange = rng.next();
}
int nextRange;
};
struct ConvertScaleAbsOp : public BaseElemWiseOp
{
ConvertScaleAbsOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::convertScaleAbs(src[0], dst, alpha, gamma[0]);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::add(src[0], alpha, Mat(), 0, Scalar::all(gamma[0]), dst, CV_8UC(src[0].channels()), true);
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1,
ninputs > 1 ? ARITHM_MAX_CHANNELS : 4);
}
double getMaxErr(int)
{
return 1;
}
void generateScalars(int depth, RNG& rng)
{
if( rng.uniform(0, 2) )
BaseElemWiseOp::generateScalars(depth, rng);
else
{
alpha = 1;
gamma = Scalar::all(0);
}
}
};
namespace reference {
static void flip(const Mat& src, Mat& dst, int flipcode)
{
CV_Assert(src.dims == 2);
dst.create(src.size(), src.type());
int i, j, k, esz = (int)src.elemSize(), width = src.cols*esz;
for( i = 0; i < dst.rows; i++ )
{
const uchar* sptr = src.ptr(flipcode == 1 ? i : dst.rows - i - 1);
uchar* dptr = dst.ptr(i);
if( flipcode == 0 )
memcpy(dptr, sptr, width);
else
{
for( j = 0; j < width; j += esz )
for( k = 0; k < esz; k++ )
dptr[j + k] = sptr[width - j - esz + k];
}
}
}
static void setIdentity(Mat& dst, const Scalar& s)
{
CV_Assert( dst.dims == 2 && dst.channels() <= 4 );
double buf[4];
scalarToRawData(s, buf, dst.type(), 0);
int i, k, esz = (int)dst.elemSize(), width = dst.cols*esz;
for( i = 0; i < dst.rows; i++ )
{
uchar* dptr = dst.ptr(i);
memset( dptr, 0, width );
if( i < dst.cols )
for( k = 0; k < esz; k++ )
dptr[i*esz + k] = ((uchar*)buf)[k];
}
}
} // namespace
struct FlipOp : public BaseElemWiseOp
{
FlipOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) { flipcode = 0; }
void getRandomSize(RNG& rng, vector<int>& size)
{
cvtest::randomSize(rng, 2, 2, ARITHM_MAX_SIZE_LOG, size);
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::flip(src[0], dst, flipcode);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
reference::flip(src[0], dst, flipcode);
}
void generateScalars(int, RNG& rng)
{
flipcode = rng.uniform(0, 3) - 1;
}
double getMaxErr(int)
{
return 0;
}
int flipcode;
};
struct TransposeOp : public BaseElemWiseOp
{
TransposeOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void getRandomSize(RNG& rng, vector<int>& size)
{
cvtest::randomSize(rng, 2, 2, ARITHM_MAX_SIZE_LOG, size);
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::transpose(src[0], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
cvtest::transpose(src[0], dst);
}
double getMaxErr(int)
{
return 0;
}
};
struct SetIdentityOp : public BaseElemWiseOp
{
SetIdentityOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {}
void getRandomSize(RNG& rng, vector<int>& size)
{
cvtest::randomSize(rng, 2, 2, ARITHM_MAX_SIZE_LOG, size);
}
void op(const vector<Mat>&, Mat& dst, const Mat&)
{
cv::setIdentity(dst, gamma);
}
void refop(const vector<Mat>&, Mat& dst, const Mat&)
{
reference::setIdentity(dst, gamma);
}
double getMaxErr(int)
{
return 0;
}
};
struct SetZeroOp : public BaseElemWiseOp
{
SetZeroOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
void op(const vector<Mat>&, Mat& dst, const Mat&)
{
dst = Scalar::all(0);
}
void refop(const vector<Mat>&, Mat& dst, const Mat&)
{
cvtest::set(dst, Scalar::all(0));
}
double getMaxErr(int)
{
return 0;
}
};
namespace reference {
static void exp(const Mat& src, Mat& dst)
{
dst.create( src.dims, &src.size[0], src.type() );
const Mat *arrays[]={&src, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
size_t j, total = planes[0].total()*src.channels();
size_t i, nplanes = it.nplanes;
int depth = src.depth();
for( i = 0; i < nplanes; i++, ++it )
{
const uchar* sptr = planes[0].ptr();
uchar* dptr = planes[1].ptr();
if( depth == CV_32F )
{
for( j = 0; j < total; j++ )
((float*)dptr)[j] = std::exp(((const float*)sptr)[j]);
}
else if( depth == CV_64F )
{
for( j = 0; j < total; j++ )
((double*)dptr)[j] = std::exp(((const double*)sptr)[j]);
}
}
}
static void log(const Mat& src, Mat& dst)
{
dst.create( src.dims, &src.size[0], src.type() );
const Mat *arrays[]={&src, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
size_t j, total = planes[0].total()*src.channels();
size_t i, nplanes = it.nplanes;
int depth = src.depth();
for( i = 0; i < nplanes; i++, ++it )
{
const uchar* sptr = planes[0].ptr();
uchar* dptr = planes[1].ptr();
if( depth == CV_32F )
{
for( j = 0; j < total; j++ )
((float*)dptr)[j] = (float)std::log(fabs(((const float*)sptr)[j]));
}
else if( depth == CV_64F )
{
for( j = 0; j < total; j++ )
((double*)dptr)[j] = std::log(fabs(((const double*)sptr)[j]));
}
}
}
} // namespace
struct ExpOp : public BaseArithmOp
{
ExpOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
}
void getValueRange(int depth, double& minval, double& maxval)
{
maxval = depth == CV_32F ? 50 : 100;
minval = -maxval;
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
cv::exp(src[0], dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
reference::exp(src[0], dst);
}
double getMaxErr(int depth)
{
return depth == CV_32F ? 1e-5 : 1e-12;
}
};
struct LogOp : public BaseArithmOp
{
LogOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS);
}
void getValueRange(int depth, double& minval, double& maxval)
{
maxval = depth == CV_32F ? 50 : 100;
minval = -maxval;
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
Mat temp;
reference::exp(src[0], temp);
cv::log(temp, dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
Mat temp;
reference::exp(src[0], temp);
reference::log(temp, dst);
}
double getMaxErr(int depth)
{
return depth == CV_32F ? 1e-5 : 1e-12;
}
};
namespace reference {
static void cartToPolar(const Mat& mx, const Mat& my, Mat& mmag, Mat& mangle, bool angleInDegrees)
{
CV_Assert( (mx.type() == CV_32F || mx.type() == CV_64F) &&
mx.type() == my.type() && mx.size == my.size );
mmag.create( mx.dims, &mx.size[0], mx.type() );
mangle.create( mx.dims, &mx.size[0], mx.type() );
const Mat *arrays[]={&mx, &my, &mmag, &mangle, 0};
Mat planes[4];
NAryMatIterator it(arrays, planes);
size_t j, total = planes[0].total();
size_t i, nplanes = it.nplanes;
int depth = mx.depth();
double scale = angleInDegrees ? 180/CV_PI : 1;
for( i = 0; i < nplanes; i++, ++it )
{
if( depth == CV_32F )
{
const float* xptr = planes[0].ptr<float>();
const float* yptr = planes[1].ptr<float>();
float* mptr = planes[2].ptr<float>();
float* aptr = planes[3].ptr<float>();
for( j = 0; j < total; j++ )
{
mptr[j] = std::sqrt(xptr[j]*xptr[j] + yptr[j]*yptr[j]);
double a = atan2((double)yptr[j], (double)xptr[j]);
if( a < 0 ) a += CV_PI*2;
aptr[j] = (float)(a*scale);
}
}
else
{
const double* xptr = planes[0].ptr<double>();
const double* yptr = planes[1].ptr<double>();
double* mptr = planes[2].ptr<double>();
double* aptr = planes[3].ptr<double>();
for( j = 0; j < total; j++ )
{
mptr[j] = std::sqrt(xptr[j]*xptr[j] + yptr[j]*yptr[j]);
double a = atan2(yptr[j], xptr[j]);
if( a < 0 ) a += CV_PI*2;
aptr[j] = a*scale;
}
}
}
}
} // namespace
struct CartToPolarToCartOp : public BaseArithmOp
{
CartToPolarToCartOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0))
{
context = 3;
angleInDegrees = true;
}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, 1);
}
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
Mat mag, angle, x, y;
cv::cartToPolar(src[0], src[1], mag, angle, angleInDegrees);
cv::polarToCart(mag, angle, x, y, angleInDegrees);
Mat msrc[] = {mag, angle, x, y};
int pairs[] = {0, 0, 1, 1, 2, 2, 3, 3};
dst.create(src[0].dims, src[0].size, CV_MAKETYPE(src[0].depth(), 4));
cv::mixChannels(msrc, 4, &dst, 1, pairs, 4);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
Mat mag, angle;
reference::cartToPolar(src[0], src[1], mag, angle, angleInDegrees);
Mat msrc[] = {mag, angle, src[0], src[1]};
int pairs[] = {0, 0, 1, 1, 2, 2, 3, 3};
dst.create(src[0].dims, src[0].size, CV_MAKETYPE(src[0].depth(), 4));
cv::mixChannels(msrc, 4, &dst, 1, pairs, 4);
}
void generateScalars(int, RNG& rng)
{
angleInDegrees = rng.uniform(0, 2) != 0;
}
double getMaxErr(int)
{
return 1e-3;
}
bool angleInDegrees;
};
struct MeanOp : public BaseArithmOp
{
MeanOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0))
{
context = 3;
};
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
dst.create(1, 1, CV_64FC4);
dst.at<Scalar>(0,0) = cv::mean(src[0], mask);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
dst.create(1, 1, CV_64FC4);
dst.at<Scalar>(0,0) = cvtest::mean(src[0], mask);
}
double getMaxErr(int)
{
return 1e-5;
}
};
struct SumOp : public BaseArithmOp
{
SumOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SCALAR_OUTPUT, 1, 1, Scalar::all(0))
{
context = 3;
};
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
dst.create(1, 1, CV_64FC4);
dst.at<Scalar>(0,0) = cv::sum(src[0]);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
dst.create(1, 1, CV_64FC4);
dst.at<Scalar>(0,0) = cvtest::mean(src[0])*(double)src[0].total();
}
double getMaxErr(int)
{
return 1e-5;
}
};
struct CountNonZeroOp : public BaseArithmOp
{
CountNonZeroOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SCALAR_OUTPUT+SUPPORT_MASK, 1, 1, Scalar::all(0))
{}
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, baseArithmTypeMask, 1, 1);
}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
Mat temp;
src[0].copyTo(temp);
if( !mask.empty() )
temp.setTo(Scalar::all(0), mask);
dst.create(1, 1, CV_32S);
dst.at<int>(0,0) = cv::countNonZero(temp);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
Mat temp;
cvtest::compare(src[0], 0, temp, CMP_NE);
if( !mask.empty() )
cvtest::set(temp, Scalar::all(0), mask);
dst.create(1, 1, CV_32S);
dst.at<int>(0,0) = saturate_cast<int>(cvtest::mean(temp)[0]/255*temp.total());
}
double getMaxErr(int)
{
return 0;
}
};
struct MeanStdDevOp : public BaseArithmOp
{
Scalar sqmeanRef;
int cn;
MeanStdDevOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0))
{
cn = 0;
context = 7;
};
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
dst.create(1, 2, CV_64FC4);
cv::meanStdDev(src[0], dst.at<Scalar>(0,0), dst.at<Scalar>(0,1), mask);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
Mat temp;
cvtest::convert(src[0], temp, CV_64F);
cvtest::multiply(temp, temp, temp);
Scalar mean = cvtest::mean(src[0], mask);
Scalar sqmean = cvtest::mean(temp, mask);
sqmeanRef = sqmean;
cn = temp.channels();
for( int c = 0; c < 4; c++ )
sqmean[c] = std::sqrt(std::max(sqmean[c] - mean[c]*mean[c], 0.));
dst.create(1, 2, CV_64FC4);
dst.at<Scalar>(0,0) = mean;
dst.at<Scalar>(0,1) = sqmean;
}
double getMaxErr(int)
{
CV_Assert(cn > 0);
double err = sqmeanRef[0];
for(int i = 1; i < cn; ++i)
err = std::max(err, sqmeanRef[i]);
return 3e-7 * err;
}
};
struct NormOp : public BaseArithmOp
{
NormOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0))
{
context = 1;
normType = 0;
};
int getRandomType(RNG& rng)
{
int type = cvtest::randomType(rng, baseArithmTypeMask, 1, 4);
for(;;)
{
normType = rng.uniform(1, 8);
if( normType == NORM_INF || normType == NORM_L1 ||
normType == NORM_L2 || normType == NORM_L2SQR ||
normType == NORM_HAMMING || normType == NORM_HAMMING2 )
break;
}
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
{
type = CV_8U;
}
return type;
}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
dst.create(1, 2, CV_64FC1);
dst.at<double>(0,0) = cv::norm(src[0], normType, mask);
dst.at<double>(0,1) = cv::norm(src[0], src[1], normType, mask);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
dst.create(1, 2, CV_64FC1);
dst.at<double>(0,0) = cvtest::norm(src[0], normType, mask);
dst.at<double>(0,1) = cvtest::norm(src[0], src[1], normType, mask);
}
void generateScalars(int, RNG& /*rng*/)
{
}
double getMaxErr(int)
{
return 1e-6;
}
int normType;
};
struct MinMaxLocOp : public BaseArithmOp
{
MinMaxLocOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0))
{
context = ARITHM_MAX_NDIMS*2 + 2;
};
int getRandomType(RNG& rng)
{
return cvtest::randomType(rng, baseArithmTypeMask, 1, 1);
}
void saveOutput(const vector<int>& minidx, const vector<int>& maxidx,
double minval, double maxval, Mat& dst)
{
int i, ndims = (int)minidx.size();
dst.create(1, ndims*2 + 2, CV_64FC1);
for( i = 0; i < ndims; i++ )
{
dst.at<double>(0,i) = minidx[i];
dst.at<double>(0,i+ndims) = maxidx[i];
}
dst.at<double>(0,ndims*2) = minval;
dst.at<double>(0,ndims*2+1) = maxval;
}
void op(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
int ndims = src[0].dims;
vector<int> minidx(ndims), maxidx(ndims);
double minval=0, maxval=0;
cv::minMaxIdx(src[0], &minval, &maxval, &minidx[0], &maxidx[0], mask);
saveOutput(minidx, maxidx, minval, maxval, dst);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat& mask)
{
int ndims=src[0].dims;
vector<int> minidx(ndims), maxidx(ndims);
double minval=0, maxval=0;
cvtest::minMaxLoc(src[0], &minval, &maxval, &minidx, &maxidx, mask);
saveOutput(minidx, maxidx, minval, maxval, dst);
}
double getMaxErr(int)
{
return 0;
}
};
struct reduceArgMinMaxOp : public BaseArithmOp
{
reduceArgMinMaxOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)),
isLast(false), isMax(false), axis(0)
{
context = ARITHM_MAX_NDIMS*2 + 2;
};
int getRandomType(RNG& rng) override
{
return cvtest::randomType(rng, baseArithmTypeMask, 1, 1);
}
void getRandomSize(RNG& rng, vector<int>& size) override
{
cvtest::randomSize(rng, 2, ARITHM_MAX_NDIMS, 6, size);
}
void generateScalars(int depth, RNG& rng) override
{
BaseElemWiseOp::generateScalars(depth, rng);
isLast = (randInt(rng) % 2 == 0);
isMax = (randInt(rng) % 2 == 0);
axis = randInt(rng);
}
int getAxis(const Mat& src) const
{
int dims = src.dims;
return static_cast<int>(axis % (2 * dims)) - dims; // [-dims; dims - 1]
}
void op(const vector<Mat>& src, Mat& dst, const Mat&) override
{
const Mat& inp = src[0];
const int axis_ = getAxis(inp);
if (isMax)
{
cv::reduceArgMax(inp, dst, axis_, isLast);
}
else
{
cv::reduceArgMin(inp, dst, axis_, isLast);
}
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&) override
{
const Mat& inp = src[0];
const int axis_ = getAxis(inp);
if (!isLast && !isMax)
{
cvtest::MinMaxReducer<std::less>::reduce(inp, dst, axis_);
}
else if (!isLast && isMax)
{
cvtest::MinMaxReducer<std::greater>::reduce(inp, dst, axis_);
}
else if (isLast && !isMax)
{
cvtest::MinMaxReducer<std::less_equal>::reduce(inp, dst, axis_);
}
else
{
cvtest::MinMaxReducer<std::greater_equal>::reduce(inp, dst, axis_);
}
}
bool isLast;
bool isMax;
uint32_t axis;
};
typedef Ptr<BaseElemWiseOp> ElemWiseOpPtr;
class ElemWiseTest : public ::testing::TestWithParam<ElemWiseOpPtr> {};
TEST_P(ElemWiseTest, accuracy)
{
ElemWiseOpPtr op = GetParam();
int testIdx = 0;
RNG rng((uint64)ARITHM_RNG_SEED);
for( testIdx = 0; testIdx < ARITHM_NTESTS; testIdx++ )
{
vector<int> size;
op->getRandomSize(rng, size);
int type = op->getRandomType(rng);
int depth = CV_MAT_DEPTH(type);
bool haveMask = ((op->flags & BaseElemWiseOp::SUPPORT_MASK) != 0
|| (op->flags & BaseElemWiseOp::SUPPORT_MULTICHANNELMASK) != 0) && rng.uniform(0, 4) == 0;
double minval=0, maxval=0;
op->getValueRange(depth, minval, maxval);
int i, ninputs = op->ninputs;
vector<Mat> src(ninputs);
for( i = 0; i < ninputs; i++ )
src[i] = cvtest::randomMat(rng, size, type, minval, maxval, true);
Mat dst0, dst, mask;
if( haveMask ) {
bool multiChannelMask = (op->flags & BaseElemWiseOp::SUPPORT_MULTICHANNELMASK) != 0
&& rng.uniform(0, 2) == 0;
int masktype = CV_8UC(multiChannelMask ? CV_MAT_CN(type) : 1);
mask = cvtest::randomMat(rng, size, masktype, 0, 2, true);
}
if( (haveMask || ninputs == 0) && !(op->flags & BaseElemWiseOp::SCALAR_OUTPUT))
{
dst0 = cvtest::randomMat(rng, size, type, minval, maxval, false);
dst = cvtest::randomMat(rng, size, type, minval, maxval, true);
cvtest::copy(dst, dst0);
}
op->generateScalars(depth, rng);
op->refop(src, dst0, mask);
op->op(src, dst, mask);
double maxErr = op->getMaxErr(depth);
ASSERT_PRED_FORMAT2(cvtest::MatComparator(maxErr, op->context), dst0, dst) << "\nsrc[0] ~ " <<
cvtest::MatInfo(!src.empty() ? src[0] : Mat()) << "\ntestCase #" << testIdx << "\n";
}
}
INSTANTIATE_TEST_CASE_P(Core_Copy, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CopyOp)));
INSTANTIATE_TEST_CASE_P(Core_Set, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SetOp)));
INSTANTIATE_TEST_CASE_P(Core_SetZero, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SetZeroOp)));
INSTANTIATE_TEST_CASE_P(Core_ConvertScale, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ConvertScaleOp)));
INSTANTIATE_TEST_CASE_P(Core_ConvertScaleFp16, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ConvertScaleFp16Op)));
INSTANTIATE_TEST_CASE_P(Core_ConvertScaleAbs, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ConvertScaleAbsOp)));
INSTANTIATE_TEST_CASE_P(Core_Add, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AddOp)));
INSTANTIATE_TEST_CASE_P(Core_Sub, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SubOp)));
INSTANTIATE_TEST_CASE_P(Core_AddS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AddSOp)));
INSTANTIATE_TEST_CASE_P(Core_SubRS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SubRSOp)));
INSTANTIATE_TEST_CASE_P(Core_ScaleAdd, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ScaleAddOp)));
INSTANTIATE_TEST_CASE_P(Core_AddWeighted, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AddWeightedOp)));
INSTANTIATE_TEST_CASE_P(Core_AbsDiff, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AbsDiffOp)));
INSTANTIATE_TEST_CASE_P(Core_AbsDiffS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AbsDiffSOp)));
INSTANTIATE_TEST_CASE_P(Core_And, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicOp('&'))));
INSTANTIATE_TEST_CASE_P(Core_AndS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('&'))));
INSTANTIATE_TEST_CASE_P(Core_Or, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicOp('|'))));
INSTANTIATE_TEST_CASE_P(Core_OrS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('|'))));
INSTANTIATE_TEST_CASE_P(Core_Xor, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicOp('^'))));
INSTANTIATE_TEST_CASE_P(Core_XorS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('^'))));
INSTANTIATE_TEST_CASE_P(Core_Not, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('~'))));
INSTANTIATE_TEST_CASE_P(Core_Max, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MaxOp)));
INSTANTIATE_TEST_CASE_P(Core_MaxS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MaxSOp)));
INSTANTIATE_TEST_CASE_P(Core_Min, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MinOp)));
INSTANTIATE_TEST_CASE_P(Core_MinS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MinSOp)));
INSTANTIATE_TEST_CASE_P(Core_Mul, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MulOp)));
INSTANTIATE_TEST_CASE_P(Core_Div, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new DivOp)));
INSTANTIATE_TEST_CASE_P(Core_Recip, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new RecipOp)));
INSTANTIATE_TEST_CASE_P(Core_Cmp, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CmpOp)));
INSTANTIATE_TEST_CASE_P(Core_CmpS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CmpSOp)));
INSTANTIATE_TEST_CASE_P(Core_InRangeS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new InRangeSOp)));
INSTANTIATE_TEST_CASE_P(Core_InRange, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new InRangeOp)));
INSTANTIATE_TEST_CASE_P(Core_Flip, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new FlipOp)));
INSTANTIATE_TEST_CASE_P(Core_Transpose, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new TransposeOp)));
INSTANTIATE_TEST_CASE_P(Core_SetIdentity, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SetIdentityOp)));
INSTANTIATE_TEST_CASE_P(Core_Exp, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ExpOp)));
INSTANTIATE_TEST_CASE_P(Core_Log, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogOp)));
INSTANTIATE_TEST_CASE_P(Core_CountNonZero, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CountNonZeroOp)));
INSTANTIATE_TEST_CASE_P(Core_Mean, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MeanOp)));
INSTANTIATE_TEST_CASE_P(Core_MeanStdDev, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MeanStdDevOp)));
INSTANTIATE_TEST_CASE_P(Core_Sum, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SumOp)));
INSTANTIATE_TEST_CASE_P(Core_Norm, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new NormOp)));
INSTANTIATE_TEST_CASE_P(Core_MinMaxLoc, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MinMaxLocOp)));
INSTANTIATE_TEST_CASE_P(Core_reduceArgMinMax, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new reduceArgMinMaxOp)));
INSTANTIATE_TEST_CASE_P(Core_CartToPolarToCart, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CartToPolarToCartOp)));
TEST(Core_ArithmMask, uninitialized)
{
RNG& rng = theRNG();
const int MAX_DIM=3;
int sizes[MAX_DIM];
for( int iter = 0; iter < 100; iter++ )
{
int dims = rng.uniform(1, MAX_DIM+1);
int depth = rng.uniform(CV_8U, CV_64F+1);
int cn = rng.uniform(1, 6);
int type = CV_MAKETYPE(depth, cn);
int op = rng.uniform(0, depth < CV_32F ? 5 : 2); // don't run binary operations between floating-point values
int depth1 = op <= 1 ? CV_64F : depth;
for (int k = 0; k < MAX_DIM; k++)
{
sizes[k] = k < dims ? rng.uniform(1, 30) : 0;
}
SCOPED_TRACE(cv::format("iter=%d dims=%d depth=%d cn=%d type=%d op=%d depth1=%d dims=[%d; %d; %d]",
iter, dims, depth, cn, type, op, depth1, sizes[0], sizes[1], sizes[2]));
Mat a(dims, sizes, type), a1;
Mat b(dims, sizes, type), b1;
Mat mask(dims, sizes, CV_8U);
Mat mask1;
Mat c, d;
rng.fill(a, RNG::UNIFORM, 0, 100);
rng.fill(b, RNG::UNIFORM, 0, 100);
// [-2,2) range means that the each generated random number
// will be one of -2, -1, 0, 1. Saturated to [0,255], it will become
// 0, 0, 0, 1 => the mask will be filled by ~25%.
rng.fill(mask, RNG::UNIFORM, -2, 2);
a.convertTo(a1, depth1);
b.convertTo(b1, depth1);
// invert the mask
cv::compare(mask, 0, mask1, CMP_EQ);
a1.setTo(0, mask1);
b1.setTo(0, mask1);
if( op == 0 )
{
cv::add(a, b, c, mask);
cv::add(a1, b1, d);
}
else if( op == 1 )
{
cv::subtract(a, b, c, mask);
cv::subtract(a1, b1, d);
}
else if( op == 2 )
{
cv::bitwise_and(a, b, c, mask);
cv::bitwise_and(a1, b1, d);
}
else if( op == 3 )
{
cv::bitwise_or(a, b, c, mask);
cv::bitwise_or(a1, b1, d);
}
else if( op == 4 )
{
cv::bitwise_xor(a, b, c, mask);
cv::bitwise_xor(a1, b1, d);
}
Mat d1;
d.convertTo(d1, depth);
EXPECT_LE(cvtest::norm(c, d1, CV_C), DBL_EPSILON);
}
Mat_<uchar> tmpSrc(100,100);
tmpSrc = 124;
Mat_<uchar> tmpMask(100,100);
tmpMask = 255;
Mat_<uchar> tmpDst(100,100);
tmpDst = 2;
tmpSrc.copyTo(tmpDst,tmpMask);
}
TEST(Multiply, FloatingPointRounding)
{
cv::Mat src(1, 1, CV_8UC1, cv::Scalar::all(110)), dst;
cv::Scalar s(147.286359696927, 1, 1 ,1);
cv::multiply(src, s, dst, 1, CV_16U);
// with CV_32F this produce result 16202
ASSERT_EQ(dst.at<ushort>(0,0), 16201);
}
TEST(Core_Add, AddToColumnWhen3Rows)
{
cv::Mat m1 = (cv::Mat_<double>(3, 2) << 1, 2, 3, 4, 5, 6);
m1.col(1) += 10;
cv::Mat m2 = (cv::Mat_<double>(3, 2) << 1, 12, 3, 14, 5, 16);
ASSERT_EQ(0, countNonZero(m1 - m2));
}
TEST(Core_Add, AddToColumnWhen4Rows)
{
cv::Mat m1 = (cv::Mat_<double>(4, 2) << 1, 2, 3, 4, 5, 6, 7, 8);
m1.col(1) += 10;
cv::Mat m2 = (cv::Mat_<double>(4, 2) << 1, 12, 3, 14, 5, 16, 7, 18);
ASSERT_EQ(0, countNonZero(m1 - m2));
}
TEST(Core_round, CvRound)
{
ASSERT_EQ(2, cvRound(2.0));
ASSERT_EQ(2, cvRound(2.1));
ASSERT_EQ(-2, cvRound(-2.1));
ASSERT_EQ(3, cvRound(2.8));
ASSERT_EQ(-3, cvRound(-2.8));
ASSERT_EQ(2, cvRound(2.5));
ASSERT_EQ(4, cvRound(3.5));
ASSERT_EQ(-2, cvRound(-2.5));
ASSERT_EQ(-4, cvRound(-3.5));
}
typedef testing::TestWithParam<Size> Mul1;
TEST_P(Mul1, One)
{
Size size = GetParam();
cv::Mat src(size, CV_32FC1, cv::Scalar::all(2)), dst,
ref_dst(size, CV_32FC1, cv::Scalar::all(6));
cv::multiply(3, src, dst);
ASSERT_EQ(0, cvtest::norm(dst, ref_dst, cv::NORM_INF));
}
INSTANTIATE_TEST_CASE_P(Arithm, Mul1, testing::Values(Size(2, 2), Size(1, 1)));
class SubtractOutputMatNotEmpty : public testing::TestWithParam< tuple<cv::Size, perf::MatType, perf::MatDepth, bool> >
{
public:
cv::Size size;
int src_type;
int dst_depth;
bool fixed;
void SetUp()
{
size = get<0>(GetParam());
src_type = get<1>(GetParam());
dst_depth = get<2>(GetParam());
fixed = get<3>(GetParam());
}
};
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat)
{
cv::Mat src1(size, src_type, cv::Scalar::all(16));
cv::Mat src2(size, src_type, cv::Scalar::all(16));
cv::Mat dst;
if (!fixed)
{
cv::subtract(src1, src2, dst, cv::noArray(), dst_depth);
}
else
{
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels()));
cv::subtract(src1, src2, fixed_dst, cv::noArray(), dst_depth);
dst = fixed_dst;
dst_depth = fixed_dst.depth();
}
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src1.size(), dst.size());
ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_WithMask)
{
cv::Mat src1(size, src_type, cv::Scalar::all(16));
cv::Mat src2(size, src_type, cv::Scalar::all(16));
cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255));
cv::Mat dst;
if (!fixed)
{
cv::subtract(src1, src2, dst, mask, dst_depth);
}
else
{
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels()));
cv::subtract(src1, src2, fixed_dst, mask, dst_depth);
dst = fixed_dst;
dst_depth = fixed_dst.depth();
}
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src1.size(), dst.size());
ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_Expr)
{
cv::Mat src1(size, src_type, cv::Scalar::all(16));
cv::Mat src2(size, src_type, cv::Scalar::all(16));
cv::Mat dst = src1 - src2;
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src1.size(), dst.size());
ASSERT_EQ(src1.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
TEST_P(SubtractOutputMatNotEmpty, Mat_Scalar)
{
cv::Mat src(size, src_type, cv::Scalar::all(16));
cv::Mat dst;
if (!fixed)
{
cv::subtract(src, cv::Scalar::all(16), dst, cv::noArray(), dst_depth);
}
else
{
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
cv::subtract(src, cv::Scalar::all(16), fixed_dst, cv::noArray(), dst_depth);
dst = fixed_dst;
dst_depth = fixed_dst.depth();
}
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
TEST_P(SubtractOutputMatNotEmpty, Mat_Scalar_WithMask)
{
cv::Mat src(size, src_type, cv::Scalar::all(16));
cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255));
cv::Mat dst;
if (!fixed)
{
cv::subtract(src, cv::Scalar::all(16), dst, mask, dst_depth);
}
else
{
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
cv::subtract(src, cv::Scalar::all(16), fixed_dst, mask, dst_depth);
dst = fixed_dst;
dst_depth = fixed_dst.depth();
}
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
TEST_P(SubtractOutputMatNotEmpty, Scalar_Mat)
{
cv::Mat src(size, src_type, cv::Scalar::all(16));
cv::Mat dst;
if (!fixed)
{
cv::subtract(cv::Scalar::all(16), src, dst, cv::noArray(), dst_depth);
}
else
{
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
cv::subtract(cv::Scalar::all(16), src, fixed_dst, cv::noArray(), dst_depth);
dst = fixed_dst;
dst_depth = fixed_dst.depth();
}
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
TEST_P(SubtractOutputMatNotEmpty, Scalar_Mat_WithMask)
{
cv::Mat src(size, src_type, cv::Scalar::all(16));
cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255));
cv::Mat dst;
if (!fixed)
{
cv::subtract(cv::Scalar::all(16), src, dst, mask, dst_depth);
}
else
{
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
cv::subtract(cv::Scalar::all(16), src, fixed_dst, mask, dst_depth);
dst = fixed_dst;
dst_depth = fixed_dst.depth();
}
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_3d)
{
int dims[] = {5, size.height, size.width};
cv::Mat src1(3, dims, src_type, cv::Scalar::all(16));
cv::Mat src2(3, dims, src_type, cv::Scalar::all(16));
cv::Mat dst;
if (!fixed)
{
cv::subtract(src1, src2, dst, cv::noArray(), dst_depth);
}
else
{
const cv::Mat fixed_dst(3, dims, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels()));
cv::subtract(src1, src2, fixed_dst, cv::noArray(), dst_depth);
dst = fixed_dst;
dst_depth = fixed_dst.depth();
}
ASSERT_FALSE(dst.empty());
ASSERT_EQ(src1.dims, dst.dims);
ASSERT_EQ(src1.size, dst.size);
ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth());
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
}
INSTANTIATE_TEST_CASE_P(Arithm, SubtractOutputMatNotEmpty, testing::Combine(
testing::Values(cv::Size(16, 16), cv::Size(13, 13), cv::Size(16, 13), cv::Size(13, 16)),
testing::Values(perf::MatType(CV_8UC1), CV_8UC3, CV_8UC4, CV_16SC1, CV_16SC3),
testing::Values(-1, CV_16S, CV_32S, CV_32F),
testing::Bool()));
TEST(Core_FindNonZero, regression)
{
Mat img(10, 10, CV_8U, Scalar::all(0));
vector<Point> pts, pts2(5);
findNonZero(img, pts);
findNonZero(img, pts2);
ASSERT_TRUE(pts.empty() && pts2.empty());
RNG rng((uint64)-1);
size_t nz = 0;
for( int i = 0; i < 10; i++ )
{
int idx = rng.uniform(0, img.rows*img.cols);
if( !img.data[idx] ) nz++;
img.data[idx] = (uchar)rng.uniform(1, 256);
}
findNonZero(img, pts);
ASSERT_TRUE(pts.size() == nz);
img.convertTo( img, CV_8S );
pts.clear();
findNonZero(img, pts);
ASSERT_TRUE(pts.size() == nz);
img.convertTo( img, CV_16U );
pts.resize(pts.size()*2);
findNonZero(img, pts);
ASSERT_TRUE(pts.size() == nz);
img.convertTo( img, CV_16S );
pts.resize(pts.size()*3);
findNonZero(img, pts);
ASSERT_TRUE(pts.size() == nz);
img.convertTo( img, CV_32S );
pts.resize(pts.size()*4);
findNonZero(img, pts);
ASSERT_TRUE(pts.size() == nz);
img.convertTo( img, CV_32F );
pts.resize(pts.size()*5);
findNonZero(img, pts);
ASSERT_TRUE(pts.size() == nz);
img.convertTo( img, CV_64F );
pts.clear();
findNonZero(img, pts);
ASSERT_TRUE(pts.size() == nz);
}
TEST(Core_BoolVector, support)
{
std::vector<bool> test;
int i, n = 205;
int nz = 0;
test.resize(n);
for( i = 0; i < n; i++ )
{
test[i] = theRNG().uniform(0, 2) != 0;
nz += (int)test[i];
}
ASSERT_EQ( nz, countNonZero(test) );
ASSERT_FLOAT_EQ((float)nz/n, (float)(cv::mean(test)[0]));
}
TEST(MinMaxLoc, Mat_UcharMax_Without_Loc)
{
Mat_<uchar> mat(50, 50);
uchar iMaxVal = std::numeric_limits<uchar>::max();
mat.setTo(iMaxVal);
double min, max;
Point minLoc, maxLoc;
minMaxLoc(mat, &min, &max, &minLoc, &maxLoc, Mat());
ASSERT_EQ(iMaxVal, min);
ASSERT_EQ(iMaxVal, max);
ASSERT_EQ(Point(0, 0), minLoc);
ASSERT_EQ(Point(0, 0), maxLoc);
}
TEST(MinMaxLoc, Mat_IntMax_Without_Mask)
{
Mat_<int> mat(50, 50);
int iMaxVal = std::numeric_limits<int>::max();
mat.setTo(iMaxVal);
double min, max;
Point minLoc, maxLoc;
minMaxLoc(mat, &min, &max, &minLoc, &maxLoc, Mat());
ASSERT_EQ(iMaxVal, min);
ASSERT_EQ(iMaxVal, max);
ASSERT_EQ(Point(0, 0), minLoc);
ASSERT_EQ(Point(0, 0), maxLoc);
}
TEST(Normalize, regression_5876_inplace_change_type)
{
double initial_values[] = {1, 2, 5, 4, 3};
float result_values[] = {0, 0.25, 1, 0.75, 0.5};
Mat m(Size(5, 1), CV_64FC1, initial_values);
Mat result(Size(5, 1), CV_32FC1, result_values);
normalize(m, m, 1, 0, NORM_MINMAX, CV_32F);
EXPECT_EQ(0, cvtest::norm(m, result, NORM_INF));
}
TEST(Normalize, regression_6125)
{
float initial_values[] = {
1888, 1692, 369, 263, 199,
280, 326, 129, 143, 126,
233, 221, 130, 126, 150,
249, 575, 574, 63, 12
};
Mat src(Size(20, 1), CV_32F, initial_values);
float min = 0., max = 400.;
normalize(src, src, 0, 400, NORM_MINMAX, CV_32F);
for(int i = 0; i < 20; i++)
{
EXPECT_GE(src.at<float>(i), min) << "Value should be >= 0";
EXPECT_LE(src.at<float>(i), max) << "Value should be <= 400";
}
}
TEST(MinMaxLoc, regression_4955_nans)
{
cv::Mat one_mat(2, 2, CV_32F, cv::Scalar(1));
cv::minMaxLoc(one_mat, NULL, NULL, NULL, NULL);
cv::Mat nan_mat(2, 2, CV_32F, cv::Scalar(std::numeric_limits<float>::quiet_NaN()));
cv::minMaxLoc(nan_mat, NULL, NULL, NULL, NULL);
}
TEST(Subtract, scalarc1_matc3)
{
int scalar = 255;
cv::Mat srcImage(5, 5, CV_8UC3, cv::Scalar::all(5)), destImage;
cv::subtract(scalar, srcImage, destImage);
ASSERT_EQ(0, cv::norm(cv::Mat(5, 5, CV_8UC3, cv::Scalar::all(250)), destImage, cv::NORM_INF));
}
TEST(Subtract, scalarc4_matc4)
{
cv::Scalar sc(255, 255, 255, 255);
cv::Mat srcImage(5, 5, CV_8UC4, cv::Scalar::all(5)), destImage;
cv::subtract(sc, srcImage, destImage);
ASSERT_EQ(0, cv::norm(cv::Mat(5, 5, CV_8UC4, cv::Scalar::all(250)), destImage, cv::NORM_INF));
}
TEST(Compare, empty)
{
cv::Mat temp, dst1, dst2;
EXPECT_NO_THROW(cv::compare(temp, temp, dst1, cv::CMP_EQ));
EXPECT_TRUE(dst1.empty());
EXPECT_THROW(dst2 = temp > 5, cv::Exception);
}
TEST(Compare, regression_8999)
{
Mat_<double> A(4,1); A << 1, 3, 2, 4;
Mat_<double> B(1,1); B << 2;
Mat C;
EXPECT_THROW(cv::compare(A, B, C, CMP_LT), cv::Exception);
}
TEST(Compare, regression_16F_do_not_crash)
{
cv::Mat mat1(2, 2, CV_16F, cv::Scalar(1));
cv::Mat mat2(2, 2, CV_16F, cv::Scalar(2));
cv::Mat dst;
EXPECT_THROW(cv::compare(mat1, mat2, dst, cv::CMP_EQ), cv::Exception);
}
TEST(Core_minMaxIdx, regression_9207_1)
{
const int rows = 4;
const int cols = 3;
uchar mask_[rows*cols] = {
255, 255, 255,
255, 0, 255,
0, 255, 255,
0, 0, 255
};
uchar src_[rows*cols] = {
1, 1, 1,
1, 1, 1,
2, 1, 1,
2, 2, 1
};
Mat mask(Size(cols, rows), CV_8UC1, mask_);
Mat src(Size(cols, rows), CV_8UC1, src_);
double minVal = -0.0, maxVal = -0.0;
int minIdx[2] = { -2, -2 }, maxIdx[2] = { -2, -2 };
cv::minMaxIdx(src, &minVal, &maxVal, minIdx, maxIdx, mask);
EXPECT_EQ(0, minIdx[0]);
EXPECT_EQ(0, minIdx[1]);
EXPECT_EQ(0, maxIdx[0]);
EXPECT_EQ(0, maxIdx[1]);
}
class TransposeND : public testing::TestWithParam< tuple<std::vector<int>, perf::MatType> >
{
public:
std::vector<int> m_shape;
int m_type;
void SetUp()
{
std::tie(m_shape, m_type) = GetParam();
}
};
TEST_P(TransposeND, basic)
{
Mat inp(m_shape, m_type);
randu(inp, 0, 255);
std::vector<int> order(m_shape.size());
std::iota(order.begin(), order.end(), 0);
auto transposer = [&order] (const std::vector<int>& id)
{
std::vector<int> ret(id.size());
for (size_t i = 0; i < id.size(); ++i)
{
ret[i] = id[order[i]];
}
return ret;
};
auto advancer = [&inp] (std::vector<int>& id)
{
for (int j = static_cast<int>(id.size() - 1); j >= 0; --j)
{
++id[j];
if (id[j] != inp.size[j])
{
break;
}
id[j] = 0;
}
};
do
{
Mat out;
cv::transposeND(inp, order, out);
std::vector<int> id(order.size());
for (size_t i = 0; i < inp.total(); ++i)
{
auto new_id = transposer(id);
switch (inp.type())
{
case CV_8UC1:
ASSERT_EQ(inp.at<uint8_t>(id.data()), out.at<uint8_t>(new_id.data()));
break;
case CV_32FC1:
ASSERT_EQ(inp.at<float>(id.data()), out.at<float>(new_id.data()));
break;
default:
FAIL() << "Unsupported type: " << inp.type();
}
advancer(id);
}
} while (std::next_permutation(order.begin(), order.end()));
}
INSTANTIATE_TEST_CASE_P(Arithm, TransposeND, testing::Combine(
testing::Values(std::vector<int>{2, 3, 4}, std::vector<int>{5, 10}),
testing::Values(perf::MatType(CV_8UC1), CV_32FC1)
));
class FlipND : public testing::TestWithParam< tuple<std::vector<int>, perf::MatType> >
{
public:
std::vector<int> m_shape;
int m_type;
void SetUp()
{
std::tie(m_shape, m_type) = GetParam();
}
};
TEST_P(FlipND, basic)
{
Mat inp(m_shape, m_type);
randu(inp, 0, 255);
int ndim = static_cast<int>(m_shape.size());
std::vector<int> axes(ndim*2); // [-shape, shape)
std::iota(axes.begin(), axes.end(), -ndim);
auto get_flipped_indices = [&inp, ndim] (size_t total, std::vector<int>& indices, int axis)
{
const int* shape = inp.size.p;
size_t t = total, idx;
for (int i = ndim - 1; i >= 0; --i)
{
idx = t / shape[i];
indices[i] = int(t - idx * shape[i]);
t = idx;
}
int _axis = (axis + ndim) % ndim;
std::vector<int> flipped_indices = indices;
flipped_indices[_axis] = shape[_axis] - 1 - indices[_axis];
return flipped_indices;
};
for (size_t i = 0; i < axes.size(); ++i)
{
int axis = axes[i];
Mat out;
cv::flipND(inp, out, axis);
// check values
std::vector<int> indices(ndim, 0);
for (size_t j = 0; j < inp.total(); ++j)
{
auto flipped_indices = get_flipped_indices(j, indices, axis);
switch (inp.type())
{
case CV_8UC1:
ASSERT_EQ(inp.at<uint8_t>(indices.data()), out.at<uint8_t>(flipped_indices.data()));
break;
case CV_32FC1:
ASSERT_EQ(inp.at<float>(indices.data()), out.at<float>(flipped_indices.data()));
break;
default:
FAIL() << "Unsupported type: " << inp.type();
}
}
}
}
INSTANTIATE_TEST_CASE_P(Arithm, FlipND, testing::Combine(
testing::Values(std::vector<int>{5, 10}, std::vector<int>{2, 3, 4}),
testing::Values(perf::MatType(CV_8UC1), CV_32FC1)
));
TEST(Core_minMaxIdx, regression_9207_2)
{
const int rows = 13;
const int cols = 15;
uchar mask_[rows*cols] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255,
0, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255,
255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 255,
255, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 255, 255,
255, 0, 0, 0, 0, 0, 0, 255, 255, 0, 0, 255, 255, 255, 0,
255, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 255, 0,
255, 0, 0, 0, 0, 0, 0, 255, 255, 0, 0, 0, 255, 255, 0,
255, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 255, 0,
255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 255, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
uchar src_[15*13] = {
5, 5, 5, 5, 5, 6, 5, 2, 0, 4, 6, 6, 4, 1, 0,
6, 5, 4, 4, 5, 6, 6, 5, 2, 0, 4, 6, 5, 2, 0,
3, 2, 1, 1, 2, 4, 6, 6, 4, 2, 3, 4, 4, 2, 0,
1, 0, 0, 0, 0, 1, 4, 5, 4, 4, 4, 4, 3, 2, 0,
0, 0, 0, 0, 0, 0, 2, 3, 4, 4, 4, 3, 2, 1, 0,
0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 3, 2, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 3, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 4, 5, 6, 5, 4, 3, 2, 0,
1, 0, 0, 0, 0, 0, 3, 5, 5, 4, 3, 4, 4, 3, 0,
2, 0, 0, 0, 0, 2, 5, 6, 5, 2, 2, 5, 4, 3, 0
};
Mat mask(Size(cols, rows), CV_8UC1, mask_);
Mat src(Size(cols, rows), CV_8UC1, src_);
double minVal = -0.0, maxVal = -0.0;
int minIdx[2] = { -2, -2 }, maxIdx[2] = { -2, -2 };
cv::minMaxIdx(src, &minVal, &maxVal, minIdx, maxIdx, mask);
EXPECT_EQ(0, minIdx[0]);
EXPECT_EQ(14, minIdx[1]);
EXPECT_EQ(0, maxIdx[0]);
EXPECT_EQ(14, maxIdx[1]);
}
TEST(Core_Set, regression_11044)
{
Mat testFloat(Size(3, 3), CV_32FC1);
Mat testDouble(Size(3, 3), CV_64FC1);
testFloat.setTo(1);
EXPECT_EQ(1, testFloat.at<float>(0,0));
testFloat.setTo(std::numeric_limits<float>::infinity());
EXPECT_EQ(std::numeric_limits<float>::infinity(), testFloat.at<float>(0, 0));
testFloat.setTo(1);
EXPECT_EQ(1, testFloat.at<float>(0, 0));
testFloat.setTo(std::numeric_limits<double>::infinity());
EXPECT_EQ(std::numeric_limits<float>::infinity(), testFloat.at<float>(0, 0));
testDouble.setTo(1);
EXPECT_EQ(1, testDouble.at<double>(0, 0));
testDouble.setTo(std::numeric_limits<float>::infinity());
EXPECT_EQ(std::numeric_limits<double>::infinity(), testDouble.at<double>(0, 0));
testDouble.setTo(1);
EXPECT_EQ(1, testDouble.at<double>(0, 0));
testDouble.setTo(std::numeric_limits<double>::infinity());
EXPECT_EQ(std::numeric_limits<double>::infinity(), testDouble.at<double>(0, 0));
Mat testMask(Size(3, 3), CV_8UC1, Scalar(1));
testFloat.setTo(1);
EXPECT_EQ(1, testFloat.at<float>(0, 0));
testFloat.setTo(std::numeric_limits<float>::infinity(), testMask);
EXPECT_EQ(std::numeric_limits<float>::infinity(), testFloat.at<float>(0, 0));
testFloat.setTo(1);
EXPECT_EQ(1, testFloat.at<float>(0, 0));
testFloat.setTo(std::numeric_limits<double>::infinity(), testMask);
EXPECT_EQ(std::numeric_limits<float>::infinity(), testFloat.at<float>(0, 0));
testDouble.setTo(1);
EXPECT_EQ(1, testDouble.at<double>(0, 0));
testDouble.setTo(std::numeric_limits<float>::infinity(), testMask);
EXPECT_EQ(std::numeric_limits<double>::infinity(), testDouble.at<double>(0, 0));
testDouble.setTo(1);
EXPECT_EQ(1, testDouble.at<double>(0, 0));
testDouble.setTo(std::numeric_limits<double>::infinity(), testMask);
EXPECT_EQ(std::numeric_limits<double>::infinity(), testDouble.at<double>(0, 0));
}
TEST(Core_Norm, IPP_regression_NORM_L1_16UC3_small)
{
int cn = 3;
Size sz(9, 4); // width < 16
Mat a(sz, CV_MAKE_TYPE(CV_16U, cn), Scalar::all(1));
Mat b(sz, CV_MAKE_TYPE(CV_16U, cn), Scalar::all(2));
uchar mask_[9*4] = {
255, 255, 255, 0, 255, 255, 0, 255, 0,
0, 255, 0, 0, 255, 255, 255, 255, 0,
0, 0, 0, 255, 0, 255, 0, 255, 255,
0, 0, 255, 0, 255, 255, 255, 0, 255
};
Mat mask(sz, CV_8UC1, mask_);
EXPECT_EQ((double)9*4*cn, cv::norm(a, b, NORM_L1)); // without mask, IPP works well
EXPECT_EQ((double)20*cn, cv::norm(a, b, NORM_L1, mask));
}
TEST(Core_Norm, NORM_L2_8UC4)
{
// Tests there is no integer overflow in norm computation for multiple channels.
const int kSide = 100;
cv::Mat4b a(kSide, kSide, cv::Scalar(255, 255, 255, 255));
cv::Mat4b b = cv::Mat4b::zeros(kSide, kSide);
const double kNorm = 2.*kSide*255.;
EXPECT_EQ(kNorm, cv::norm(a, b, NORM_L2));
}
TEST(Core_ConvertTo, regression_12121)
{
{
Mat src(4, 64, CV_32SC1, Scalar(-1));
Mat dst;
src.convertTo(dst, CV_8U);
EXPECT_EQ(0, dst.at<uchar>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(INT_MIN));
Mat dst;
src.convertTo(dst, CV_8U);
EXPECT_EQ(0, dst.at<uchar>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32767));
Mat dst;
src.convertTo(dst, CV_8U);
EXPECT_EQ(0, dst.at<uchar>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32768));
Mat dst;
src.convertTo(dst, CV_8U);
EXPECT_EQ(0, dst.at<uchar>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(32768));
Mat dst;
src.convertTo(dst, CV_8U);
EXPECT_EQ(255, dst.at<uchar>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(INT_MIN));
Mat dst;
src.convertTo(dst, CV_16U);
EXPECT_EQ(0, dst.at<ushort>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32767));
Mat dst;
src.convertTo(dst, CV_16U);
EXPECT_EQ(0, dst.at<ushort>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32768));
Mat dst;
src.convertTo(dst, CV_16U);
EXPECT_EQ(0, dst.at<ushort>(0, 0)) << "src=" << src.at<int>(0, 0);
}
{
Mat src(4, 64, CV_32SC1, Scalar(65536));
Mat dst;
src.convertTo(dst, CV_16U);
EXPECT_EQ(65535, dst.at<ushort>(0, 0)) << "src=" << src.at<int>(0, 0);
}
}
TEST(Core_MeanStdDev, regression_multichannel)
{
{
uchar buf[] = { 1, 2, 3, 4, 5, 6, 7, 8,
3, 4, 5, 6, 7, 8, 9, 10 };
double ref_buf[] = { 2., 3., 4., 5., 6., 7., 8., 9.,
1., 1., 1., 1., 1., 1., 1., 1. };
Mat src(1, 2, CV_MAKETYPE(CV_8U, 8), buf);
Mat ref_m(8, 1, CV_64FC1, ref_buf);
Mat ref_sd(8, 1, CV_64FC1, ref_buf + 8);
Mat dst_m, dst_sd;
meanStdDev(src, dst_m, dst_sd);
EXPECT_EQ(0, cv::norm(dst_m, ref_m, NORM_L1));
EXPECT_EQ(0, cv::norm(dst_sd, ref_sd, NORM_L1));
}
}
template <typename T> static inline
void testDivideInitData(Mat& src1, Mat& src2)
{
CV_StaticAssert(std::numeric_limits<T>::is_integer, "");
const static T src1_[] = {
0, 0, 0, 0,
8, 8, 8, 8,
-8, -8, -8, -8
};
Mat(3, 4, traits::Type<T>::value, (void*)src1_).copyTo(src1);
const static T src2_[] = {
1, 2, 0, std::numeric_limits<T>::max(),
1, 2, 0, std::numeric_limits<T>::max(),
1, 2, 0, std::numeric_limits<T>::max(),
};
Mat(3, 4, traits::Type<T>::value, (void*)src2_).copyTo(src2);
}
template <typename T> static inline
void testDivideInitDataFloat(Mat& src1, Mat& src2)
{
CV_StaticAssert(!std::numeric_limits<T>::is_integer, "");
const static T src1_[] = {
0, 0, 0, 0,
8, 8, 8, 8,
-8, -8, -8, -8
};
Mat(3, 4, traits::Type<T>::value, (void*)src1_).copyTo(src1);
const static T src2_[] = {
1, 2, 0, std::numeric_limits<T>::infinity(),
1, 2, 0, std::numeric_limits<T>::infinity(),
1, 2, 0, std::numeric_limits<T>::infinity(),
};
Mat(3, 4, traits::Type<T>::value, (void*)src2_).copyTo(src2);
}
template <> inline void testDivideInitData<float>(Mat& src1, Mat& src2) { testDivideInitDataFloat<float>(src1, src2); }
template <> inline void testDivideInitData<double>(Mat& src1, Mat& src2) { testDivideInitDataFloat<double>(src1, src2); }
template <typename T> static inline
void testDivideChecks(const Mat& dst)
{
ASSERT_FALSE(dst.empty());
CV_StaticAssert(std::numeric_limits<T>::is_integer, "");
for (int y = 0; y < dst.rows; y++)
{
for (int x = 0; x < dst.cols; x++)
{
if ((x % 4) == 2)
{
EXPECT_EQ(0, dst.at<T>(y, x)) << "dst(" << y << ", " << x << ") = " << dst.at<T>(y, x);
}
else
{
EXPECT_TRUE(0 == cvIsNaN((double)dst.at<T>(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at<T>(y, x);
EXPECT_TRUE(0 == cvIsInf((double)dst.at<T>(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at<T>(y, x);
}
}
}
}
template <typename T> static inline
void testDivideChecksFP(const Mat& dst)
{
ASSERT_FALSE(dst.empty());
CV_StaticAssert(!std::numeric_limits<T>::is_integer, "");
for (int y = 0; y < dst.rows; y++)
{
for (int x = 0; x < dst.cols; x++)
{
if ((y % 3) == 0 && (x % 4) == 2)
{
EXPECT_TRUE(cvIsNaN(dst.at<T>(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at<T>(y, x);
}
else if ((x % 4) == 2)
{
EXPECT_TRUE(cvIsInf(dst.at<T>(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at<T>(y, x);
}
else
{
EXPECT_FALSE(cvIsNaN(dst.at<T>(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at<T>(y, x);
EXPECT_FALSE(cvIsInf(dst.at<T>(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at<T>(y, x);
}
}
}
}
template <> inline void testDivideChecks<float>(const Mat& dst) { testDivideChecksFP<float>(dst); }
template <> inline void testDivideChecks<double>(const Mat& dst) { testDivideChecksFP<double>(dst); }
template <typename T> static inline
void testDivide(bool isUMat, double scale, bool largeSize, bool tailProcessing, bool roi)
{
Mat src1, src2;
testDivideInitData<T>(src1, src2);
ASSERT_FALSE(src1.empty()); ASSERT_FALSE(src2.empty());
if (largeSize)
{
repeat(src1.clone(), 1, 8, src1);
repeat(src2.clone(), 1, 8, src2);
}
if (tailProcessing)
{
src1 = src1(Rect(0, 0, src1.cols - 1, src1.rows));
src2 = src2(Rect(0, 0, src2.cols - 1, src2.rows));
}
if (!roi && tailProcessing)
{
src1 = src1.clone();
src2 = src2.clone();
}
Mat dst;
if (!isUMat)
{
cv::divide(src1, src2, dst, scale);
}
else
{
UMat usrc1, usrc2, udst;
src1.copyTo(usrc1);
src2.copyTo(usrc2);
cv::divide(usrc1, usrc2, udst, scale);
udst.copyTo(dst);
}
testDivideChecks<T>(dst);
if (::testing::Test::HasFailure())
{
std::cout << "src1 = " << std::endl << src1 << std::endl;
std::cout << "src2 = " << std::endl << src2 << std::endl;
std::cout << "dst = " << std::endl << dst << std::endl;
}
}
typedef tuple<bool, double, bool, bool, bool> DivideRulesParam;
typedef testing::TestWithParam<DivideRulesParam> Core_DivideRules;
TEST_P(Core_DivideRules, type_32s)
{
DivideRulesParam param = GetParam();
testDivide<int>(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param));
}
TEST_P(Core_DivideRules, type_16s)
{
DivideRulesParam param = GetParam();
testDivide<short>(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param));
}
TEST_P(Core_DivideRules, type_32f)
{
DivideRulesParam param = GetParam();
testDivide<float>(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param));
}
TEST_P(Core_DivideRules, type_64f)
{
DivideRulesParam param = GetParam();
testDivide<double>(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param));
}
INSTANTIATE_TEST_CASE_P(/* */, Core_DivideRules, testing::Combine(
/* isMat */ testing::Values(false),
/* scale */ testing::Values(1.0, 5.0),
/* largeSize */ testing::Bool(),
/* tail */ testing::Bool(),
/* roi */ testing::Bool()
));
INSTANTIATE_TEST_CASE_P(UMat, Core_DivideRules, testing::Combine(
/* isMat */ testing::Values(true),
/* scale */ testing::Values(1.0, 5.0),
/* largeSize */ testing::Bool(),
/* tail */ testing::Bool(),
/* roi */ testing::Bool()
));
TEST(Core_MinMaxIdx, rows_overflow)
{
const int N = 65536 + 1;
const int M = 1;
{
setRNGSeed(123);
Mat m(N, M, CV_32FC1);
randu(m, -100, 100);
double minVal = 0, maxVal = 0;
int minIdx[CV_MAX_DIM] = { 0 }, maxIdx[CV_MAX_DIM] = { 0 };
cv::minMaxIdx(m, &minVal, &maxVal, minIdx, maxIdx);
double minVal0 = 0, maxVal0 = 0;
int minIdx0[CV_MAX_DIM] = { 0 }, maxIdx0[CV_MAX_DIM] = { 0 };
cv::ipp::setUseIPP(false);
cv::minMaxIdx(m, &minVal0, &maxVal0, minIdx0, maxIdx0);
cv::ipp::setUseIPP(true);
EXPECT_FALSE(fabs(minVal0 - minVal) > 1e-6 || fabs(maxVal0 - maxVal) > 1e-6) << "NxM=" << N << "x" << M <<
" min=" << minVal0 << " vs " << minVal <<
" max=" << maxVal0 << " vs " << maxVal;
}
}
TEST(Core_Magnitude, regression_19506)
{
for (int N = 1; N <= 64; ++N)
{
Mat a(1, N, CV_32FC1, Scalar::all(1e-20));
Mat res;
magnitude(a, a, res);
EXPECT_LE(cvtest::norm(res, NORM_L1), 1e-15) << N;
}
}
TEST(Core_CartPolar, inplace)
{
RNG& rng = TS::ptr()->get_rng();
cv::Mat1d A[2] = {cv::Mat1d(10, 10), cv::Mat1d(10, 10)};
cv::Mat1d B[2], C[2];
cv::UMat uA[2];
for(int i = 0; i < 2; ++i)
{
cvtest::randUni(rng, A[i], Scalar::all(-1000), Scalar::all(1000));
A[i].copyTo(uA[i]);
}
// Reverse
cv::cartToPolar(A[0], A[1], B[0], B[1], false);
cv::polarToCart(B[0], B[1], C[0], C[1], false);
EXPECT_MAT_NEAR(A[0], C[0], 2);
EXPECT_MAT_NEAR(A[1], C[1], 2);
// Inplace
EXPECT_THROW(cv::polarToCart(B[0], B[1], B[0], B[1], false), cv::Exception);
EXPECT_THROW(cv::polarToCart(B[0], B[1], B[1], B[0], false), cv::Exception);
EXPECT_THROW(cv::cartToPolar(A[0], A[1], A[0], A[1], false), cv::Exception);
EXPECT_THROW(cv::cartToPolar(A[0], A[1], A[1], A[0], false), cv::Exception);
// Inplace OCL
EXPECT_THROW(cv::polarToCart(uA[0], uA[1], uA[0], uA[1]), cv::Exception);
EXPECT_THROW(cv::polarToCart(uA[0], uA[1], uA[1], uA[0]), cv::Exception);
EXPECT_THROW(cv::cartToPolar(uA[0], uA[1], uA[0], uA[1]), cv::Exception);
EXPECT_THROW(cv::cartToPolar(uA[0], uA[1], uA[0], uA[1]), cv::Exception);
}
}} // namespace