mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
96bf26611e
* moved DIS optical flow from opencv_contrib to opencv, moved TVL1 from opencv to opencv_contrib * fixed compile warning * TVL1 optical flow example moved to opencv_contrib
161 lines
6.3 KiB
C++
161 lines
6.3 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
typedef tuple<Size> OFParams;
|
|
typedef TestWithParam<OFParams> DenseOpticalFlow_DIS;
|
|
typedef TestWithParam<OFParams> DenseOpticalFlow_VariationalRefinement;
|
|
|
|
TEST_P(DenseOpticalFlow_DIS, MultithreadReproducibility)
|
|
{
|
|
double MAX_DIF = 0.01;
|
|
double MAX_MEAN_DIF = 0.001;
|
|
int loopsCount = 2;
|
|
RNG rng(0);
|
|
|
|
OFParams params = GetParam();
|
|
Size size = get<0>(params);
|
|
|
|
int nThreads = cv::getNumThreads();
|
|
if (nThreads == 1)
|
|
throw SkipTestException("Single thread environment");
|
|
for (int iter = 0; iter <= loopsCount; iter++)
|
|
{
|
|
Mat frame1(size, CV_8U);
|
|
randu(frame1, 0, 255);
|
|
Mat frame2(size, CV_8U);
|
|
randu(frame2, 0, 255);
|
|
|
|
Ptr<DISOpticalFlow> algo = DISOpticalFlow::create();
|
|
int psz = rng.uniform(4, 16);
|
|
int pstr = rng.uniform(1, psz - 1);
|
|
int grad_iter = rng.uniform(1, 64);
|
|
int var_iter = rng.uniform(0, 10);
|
|
bool use_mean_normalization = !!rng.uniform(0, 2);
|
|
bool use_spatial_propagation = !!rng.uniform(0, 2);
|
|
algo->setFinestScale(0);
|
|
algo->setPatchSize(psz);
|
|
algo->setPatchStride(pstr);
|
|
algo->setGradientDescentIterations(grad_iter);
|
|
algo->setVariationalRefinementIterations(var_iter);
|
|
algo->setUseMeanNormalization(use_mean_normalization);
|
|
algo->setUseSpatialPropagation(use_spatial_propagation);
|
|
|
|
cv::setNumThreads(nThreads);
|
|
Mat resMultiThread;
|
|
algo->calc(frame1, frame2, resMultiThread);
|
|
|
|
cv::setNumThreads(1);
|
|
Mat resSingleThread;
|
|
algo->calc(frame1, frame2, resSingleThread);
|
|
|
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
|
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF * frame1.total());
|
|
|
|
// resulting flow should be within the frame bounds:
|
|
double min_val, max_val;
|
|
minMaxLoc(resMultiThread, &min_val, &max_val);
|
|
EXPECT_LE(abs(min_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
|
|
EXPECT_LE(abs(max_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(FullSet, DenseOpticalFlow_DIS, Values(szODD, szQVGA));
|
|
|
|
TEST_P(DenseOpticalFlow_VariationalRefinement, MultithreadReproducibility)
|
|
{
|
|
double MAX_DIF = 0.01;
|
|
double MAX_MEAN_DIF = 0.001;
|
|
float input_flow_rad = 5.0;
|
|
int loopsCount = 2;
|
|
RNG rng(0);
|
|
|
|
OFParams params = GetParam();
|
|
Size size = get<0>(params);
|
|
|
|
int nThreads = cv::getNumThreads();
|
|
if (nThreads == 1)
|
|
throw SkipTestException("Single thread environment");
|
|
for (int iter = 0; iter <= loopsCount; iter++)
|
|
{
|
|
Mat frame1(size, CV_8U);
|
|
randu(frame1, 0, 255);
|
|
Mat frame2(size, CV_8U);
|
|
randu(frame2, 0, 255);
|
|
Mat flow(size, CV_32FC2);
|
|
randu(flow, -input_flow_rad, input_flow_rad);
|
|
|
|
Ptr<VariationalRefinement> var = VariationalRefinement::create();
|
|
var->setAlpha(rng.uniform(1.0f, 100.0f));
|
|
var->setGamma(rng.uniform(0.1f, 10.0f));
|
|
var->setDelta(rng.uniform(0.1f, 10.0f));
|
|
var->setSorIterations(rng.uniform(1, 20));
|
|
var->setFixedPointIterations(rng.uniform(1, 20));
|
|
var->setOmega(rng.uniform(1.01f, 1.99f));
|
|
|
|
cv::setNumThreads(nThreads);
|
|
Mat resMultiThread;
|
|
flow.copyTo(resMultiThread);
|
|
var->calc(frame1, frame2, resMultiThread);
|
|
|
|
cv::setNumThreads(1);
|
|
Mat resSingleThread;
|
|
flow.copyTo(resSingleThread);
|
|
var->calc(frame1, frame2, resSingleThread);
|
|
|
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
|
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF * frame1.total());
|
|
|
|
// resulting flow should be within the frame bounds:
|
|
double min_val, max_val;
|
|
minMaxLoc(resMultiThread, &min_val, &max_val);
|
|
EXPECT_LE(abs(min_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
|
|
EXPECT_LE(abs(max_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(FullSet, DenseOpticalFlow_VariationalRefinement, Values(szODD, szQVGA));
|
|
|
|
}} // namespace
|