mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 06:10:02 +08:00
56b27bcc7e
this fixes 64-bit MSVC warning
780 lines
23 KiB
C++
780 lines
23 KiB
C++
/***********************************************************************
|
||
* Software License Agreement (BSD License)
|
||
*
|
||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||
*
|
||
* THE BSD LICENSE
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*************************************************************************/
|
||
|
||
#ifndef OPENCV_FLANN_DIST_H_
|
||
#define OPENCV_FLANN_DIST_H_
|
||
|
||
#include <cmath>
|
||
#include <cstdlib>
|
||
#include <string.h>
|
||
#ifdef _MSC_VER
|
||
typedef unsigned __int32 uint32_t;
|
||
typedef unsigned __int64 uint64_t;
|
||
#else
|
||
#include <stdint.h>
|
||
#endif
|
||
|
||
#include "defines.h"
|
||
|
||
#ifdef __ARM_NEON__
|
||
#include "arm_neon.h"
|
||
#endif
|
||
|
||
namespace cvflann
|
||
{
|
||
|
||
template<typename T>
|
||
inline T abs(T x) { return (x<0) ? -x : x; }
|
||
|
||
template<>
|
||
inline int abs<int>(int x) { return ::abs(x); }
|
||
|
||
template<>
|
||
inline float abs<float>(float x) { return fabsf(x); }
|
||
|
||
template<>
|
||
inline double abs<double>(double x) { return fabs(x); }
|
||
|
||
template<typename T>
|
||
struct Accumulator { typedef T Type; };
|
||
template<>
|
||
struct Accumulator<unsigned char> { typedef float Type; };
|
||
template<>
|
||
struct Accumulator<unsigned short> { typedef float Type; };
|
||
template<>
|
||
struct Accumulator<unsigned int> { typedef float Type; };
|
||
template<>
|
||
struct Accumulator<char> { typedef float Type; };
|
||
template<>
|
||
struct Accumulator<short> { typedef float Type; };
|
||
template<>
|
||
struct Accumulator<int> { typedef float Type; };
|
||
|
||
#undef True
|
||
#undef False
|
||
|
||
class True
|
||
{
|
||
};
|
||
|
||
class False
|
||
{
|
||
};
|
||
|
||
|
||
/**
|
||
* Squared Euclidean distance functor.
|
||
*
|
||
* This is the simpler, unrolled version. This is preferable for
|
||
* very low dimensionality data (eg 3D points)
|
||
*/
|
||
template<class T>
|
||
struct L2_Simple
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType diff;
|
||
for(size_t i = 0; i < size; ++i ) {
|
||
diff = *a++ - *b++;
|
||
result += diff*diff;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
return (a-b)*(a-b);
|
||
}
|
||
};
|
||
|
||
|
||
|
||
/**
|
||
* Squared Euclidean distance functor, optimized version
|
||
*/
|
||
template<class T>
|
||
struct L2
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
/**
|
||
* Compute the squared Euclidean distance between two vectors.
|
||
*
|
||
* This is highly optimised, with loop unrolling, as it is one
|
||
* of the most expensive inner loops.
|
||
*
|
||
* The computation of squared root at the end is omitted for
|
||
* efficiency.
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType diff0, diff1, diff2, diff3;
|
||
Iterator1 last = a + size;
|
||
Iterator1 lastgroup = last - 3;
|
||
|
||
/* Process 4 items with each loop for efficiency. */
|
||
while (a < lastgroup) {
|
||
diff0 = (ResultType)(a[0] - b[0]);
|
||
diff1 = (ResultType)(a[1] - b[1]);
|
||
diff2 = (ResultType)(a[2] - b[2]);
|
||
diff3 = (ResultType)(a[3] - b[3]);
|
||
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
|
||
a += 4;
|
||
b += 4;
|
||
|
||
if ((worst_dist>0)&&(result>worst_dist)) {
|
||
return result;
|
||
}
|
||
}
|
||
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
||
while (a < last) {
|
||
diff0 = (ResultType)(*a++ - *b++);
|
||
result += diff0 * diff0;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Partial euclidean distance, using just one dimension. This is used by the
|
||
* kd-tree when computing partial distances while traversing the tree.
|
||
*
|
||
* Squared root is omitted for efficiency.
|
||
*/
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
return (a-b)*(a-b);
|
||
}
|
||
};
|
||
|
||
|
||
/*
|
||
* Manhattan distance functor, optimized version
|
||
*/
|
||
template<class T>
|
||
struct L1
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
/**
|
||
* Compute the Manhattan (L_1) distance between two vectors.
|
||
*
|
||
* This is highly optimised, with loop unrolling, as it is one
|
||
* of the most expensive inner loops.
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType diff0, diff1, diff2, diff3;
|
||
Iterator1 last = a + size;
|
||
Iterator1 lastgroup = last - 3;
|
||
|
||
/* Process 4 items with each loop for efficiency. */
|
||
while (a < lastgroup) {
|
||
diff0 = (ResultType)abs(a[0] - b[0]);
|
||
diff1 = (ResultType)abs(a[1] - b[1]);
|
||
diff2 = (ResultType)abs(a[2] - b[2]);
|
||
diff3 = (ResultType)abs(a[3] - b[3]);
|
||
result += diff0 + diff1 + diff2 + diff3;
|
||
a += 4;
|
||
b += 4;
|
||
|
||
if ((worst_dist>0)&&(result>worst_dist)) {
|
||
return result;
|
||
}
|
||
}
|
||
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
||
while (a < last) {
|
||
diff0 = (ResultType)abs(*a++ - *b++);
|
||
result += diff0;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Partial distance, used by the kd-tree.
|
||
*/
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
return abs(a-b);
|
||
}
|
||
};
|
||
|
||
|
||
|
||
template<class T>
|
||
struct MinkowskiDistance
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
int order;
|
||
|
||
MinkowskiDistance(int order_) : order(order_) {}
|
||
|
||
/**
|
||
* Compute the Minkowsky (L_p) distance between two vectors.
|
||
*
|
||
* This is highly optimised, with loop unrolling, as it is one
|
||
* of the most expensive inner loops.
|
||
*
|
||
* The computation of squared root at the end is omitted for
|
||
* efficiency.
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType diff0, diff1, diff2, diff3;
|
||
Iterator1 last = a + size;
|
||
Iterator1 lastgroup = last - 3;
|
||
|
||
/* Process 4 items with each loop for efficiency. */
|
||
while (a < lastgroup) {
|
||
diff0 = (ResultType)abs(a[0] - b[0]);
|
||
diff1 = (ResultType)abs(a[1] - b[1]);
|
||
diff2 = (ResultType)abs(a[2] - b[2]);
|
||
diff3 = (ResultType)abs(a[3] - b[3]);
|
||
result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
|
||
a += 4;
|
||
b += 4;
|
||
|
||
if ((worst_dist>0)&&(result>worst_dist)) {
|
||
return result;
|
||
}
|
||
}
|
||
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
||
while (a < last) {
|
||
diff0 = (ResultType)abs(*a++ - *b++);
|
||
result += pow(diff0,order);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Partial distance, used by the kd-tree.
|
||
*/
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
return pow(static_cast<ResultType>(abs(a-b)),order);
|
||
}
|
||
};
|
||
|
||
|
||
|
||
template<class T>
|
||
struct MaxDistance
|
||
{
|
||
typedef False is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
/**
|
||
* Compute the max distance (L_infinity) between two vectors.
|
||
*
|
||
* This distance is not a valid kdtree distance, it's not dimensionwise additive.
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType diff0, diff1, diff2, diff3;
|
||
Iterator1 last = a + size;
|
||
Iterator1 lastgroup = last - 3;
|
||
|
||
/* Process 4 items with each loop for efficiency. */
|
||
while (a < lastgroup) {
|
||
diff0 = abs(a[0] - b[0]);
|
||
diff1 = abs(a[1] - b[1]);
|
||
diff2 = abs(a[2] - b[2]);
|
||
diff3 = abs(a[3] - b[3]);
|
||
if (diff0>result) {result = diff0; }
|
||
if (diff1>result) {result = diff1; }
|
||
if (diff2>result) {result = diff2; }
|
||
if (diff3>result) {result = diff3; }
|
||
a += 4;
|
||
b += 4;
|
||
|
||
if ((worst_dist>0)&&(result>worst_dist)) {
|
||
return result;
|
||
}
|
||
}
|
||
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
||
while (a < last) {
|
||
diff0 = abs(*a++ - *b++);
|
||
result = (diff0>result) ? diff0 : result;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* This distance functor is not dimension-wise additive, which
|
||
* makes it an invalid kd-tree distance, not implementing the accum_dist method */
|
||
|
||
};
|
||
|
||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
/**
|
||
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
|
||
* bit count of A exclusive XOR'ed with B
|
||
*/
|
||
struct HammingLUT
|
||
{
|
||
typedef False is_kdtree_distance;
|
||
typedef False is_vector_space_distance;
|
||
|
||
typedef unsigned char ElementType;
|
||
typedef int ResultType;
|
||
|
||
/** this will count the bits in a ^ b
|
||
*/
|
||
ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
|
||
{
|
||
static const uchar popCountTable[] =
|
||
{
|
||
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
||
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
||
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
||
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
||
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
||
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
|
||
};
|
||
ResultType result = 0;
|
||
for (size_t i = 0; i < size; i++) {
|
||
result += popCountTable[a[i] ^ b[i]];
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
|
||
* That code was taken from brief.cpp in OpenCV
|
||
*/
|
||
template<class T>
|
||
struct Hamming
|
||
{
|
||
typedef False is_kdtree_distance;
|
||
typedef False is_vector_space_distance;
|
||
|
||
|
||
typedef T ElementType;
|
||
typedef int ResultType;
|
||
|
||
template<typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
||
{
|
||
ResultType result = 0;
|
||
#ifdef __GNUC__
|
||
#ifdef __ARM_NEON__
|
||
{
|
||
uint32x4_t bits = vmovq_n_u32(0);
|
||
for (size_t i = 0; i < size; i += 16) {
|
||
uint8x16_t A_vec = vld1q_u8 (a + i);
|
||
uint8x16_t B_vec = vld1q_u8 (b + i);
|
||
uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
|
||
uint8x16_t bitsSet = vcntq_u8 (AxorB);
|
||
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
|
||
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
|
||
bits = vaddq_u32(bits, bitSet4);
|
||
}
|
||
uint64x2_t bitSet2 = vpaddlq_u32 (bits);
|
||
result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
|
||
result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
|
||
}
|
||
#else
|
||
{
|
||
//for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
|
||
typedef unsigned long long pop_t;
|
||
const size_t modulo = size % sizeof(pop_t);
|
||
const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
|
||
const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
|
||
const pop_t* a2_end = a2 + (size / sizeof(pop_t));
|
||
|
||
for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
|
||
|
||
if (modulo) {
|
||
//in the case where size is not dividable by sizeof(size_t)
|
||
//need to mask off the bits at the end
|
||
pop_t a_final = 0, b_final = 0;
|
||
memcpy(&a_final, a2, modulo);
|
||
memcpy(&b_final, b2, modulo);
|
||
result += __builtin_popcountll(a_final ^ b_final);
|
||
}
|
||
}
|
||
#endif //NEON
|
||
#else
|
||
HammingLUT lut;
|
||
result = lut(reinterpret_cast<const unsigned char*> (a),
|
||
reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
|
||
#endif
|
||
return result;
|
||
}
|
||
};
|
||
|
||
template<typename T>
|
||
struct Hamming2
|
||
{
|
||
typedef False is_kdtree_distance;
|
||
typedef False is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef int ResultType;
|
||
|
||
/** This is popcount_3() from:
|
||
* http://en.wikipedia.org/wiki/Hamming_weight */
|
||
unsigned int popcnt32(uint32_t n) const
|
||
{
|
||
n -= ((n >> 1) & 0x55555555);
|
||
n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
|
||
return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
|
||
}
|
||
|
||
#ifdef FLANN_PLATFORM_64_BIT
|
||
unsigned int popcnt64(uint64_t n) const
|
||
{
|
||
n -= ((n >> 1) & 0x5555555555555555);
|
||
n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
|
||
return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
|
||
}
|
||
#endif
|
||
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
||
{
|
||
#ifdef FLANN_PLATFORM_64_BIT
|
||
const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
|
||
const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
|
||
ResultType result = 0;
|
||
size /= (sizeof(uint64_t)/sizeof(unsigned char));
|
||
for(size_t i = 0; i < size; ++i ) {
|
||
result += popcnt64(*pa ^ *pb);
|
||
++pa;
|
||
++pb;
|
||
}
|
||
#else
|
||
const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
|
||
const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
|
||
ResultType result = 0;
|
||
size /= (sizeof(uint32_t)/sizeof(unsigned char));
|
||
for(size_t i = 0; i < size; ++i ) {
|
||
result += popcnt32(*pa ^ *pb);
|
||
++pa;
|
||
++pb;
|
||
}
|
||
#endif
|
||
return result;
|
||
}
|
||
};
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
template<class T>
|
||
struct HistIntersectionDistance
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
/**
|
||
* Compute the histogram intersection distance
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType min0, min1, min2, min3;
|
||
Iterator1 last = a + size;
|
||
Iterator1 lastgroup = last - 3;
|
||
|
||
/* Process 4 items with each loop for efficiency. */
|
||
while (a < lastgroup) {
|
||
min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
|
||
min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
|
||
min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
|
||
min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
|
||
result += min0 + min1 + min2 + min3;
|
||
a += 4;
|
||
b += 4;
|
||
if ((worst_dist>0)&&(result>worst_dist)) {
|
||
return result;
|
||
}
|
||
}
|
||
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
||
while (a < last) {
|
||
min0 = (ResultType)(*a < *b ? *a : *b);
|
||
result += min0;
|
||
++a;
|
||
++b;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Partial distance, used by the kd-tree.
|
||
*/
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
return a<b ? a : b;
|
||
}
|
||
};
|
||
|
||
|
||
|
||
template<class T>
|
||
struct HellingerDistance
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
/**
|
||
* Compute the histogram intersection distance
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType diff0, diff1, diff2, diff3;
|
||
Iterator1 last = a + size;
|
||
Iterator1 lastgroup = last - 3;
|
||
|
||
/* Process 4 items with each loop for efficiency. */
|
||
while (a < lastgroup) {
|
||
diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
|
||
diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
|
||
diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
|
||
diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
|
||
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
|
||
a += 4;
|
||
b += 4;
|
||
}
|
||
while (a < last) {
|
||
diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
|
||
result += diff0 * diff0;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Partial distance, used by the kd-tree.
|
||
*/
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
return sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
|
||
}
|
||
};
|
||
|
||
|
||
template<class T>
|
||
struct ChiSquareDistance
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
/**
|
||
* Compute the chi-square distance
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType sum, diff;
|
||
Iterator1 last = a + size;
|
||
|
||
while (a < last) {
|
||
sum = (ResultType)(*a + *b);
|
||
if (sum>0) {
|
||
diff = (ResultType)(*a - *b);
|
||
result += diff*diff/sum;
|
||
}
|
||
++a;
|
||
++b;
|
||
|
||
if ((worst_dist>0)&&(result>worst_dist)) {
|
||
return result;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Partial distance, used by the kd-tree.
|
||
*/
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType sum, diff;
|
||
|
||
sum = (ResultType)(a+b);
|
||
if (sum>0) {
|
||
diff = (ResultType)(a-b);
|
||
result = diff*diff/sum;
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
|
||
|
||
template<class T>
|
||
struct KL_Divergence
|
||
{
|
||
typedef True is_kdtree_distance;
|
||
typedef True is_vector_space_distance;
|
||
|
||
typedef T ElementType;
|
||
typedef typename Accumulator<T>::Type ResultType;
|
||
|
||
/**
|
||
* Compute the Kullback–Leibler divergence
|
||
*/
|
||
template <typename Iterator1, typename Iterator2>
|
||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||
{
|
||
ResultType result = ResultType();
|
||
Iterator1 last = a + size;
|
||
|
||
while (a < last) {
|
||
if (* a != 0) {
|
||
ResultType ratio = (ResultType)(*a / *b);
|
||
if (ratio>0) {
|
||
result += *a * log(ratio);
|
||
}
|
||
}
|
||
++a;
|
||
++b;
|
||
|
||
if ((worst_dist>0)&&(result>worst_dist)) {
|
||
return result;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Partial distance, used by the kd-tree.
|
||
*/
|
||
template <typename U, typename V>
|
||
inline ResultType accum_dist(const U& a, const V& b, int) const
|
||
{
|
||
ResultType result = ResultType();
|
||
ResultType ratio = (ResultType)(a / b);
|
||
if (ratio>0) {
|
||
result = a * log(ratio);
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
|
||
|
||
|
||
/*
|
||
* This is a "zero iterator". It basically behaves like a zero filled
|
||
* array to all algorithms that use arrays as iterators (STL style).
|
||
* It's useful when there's a need to compute the distance between feature
|
||
* and origin it and allows for better compiler optimisation than using a
|
||
* zero-filled array.
|
||
*/
|
||
template <typename T>
|
||
struct ZeroIterator
|
||
{
|
||
|
||
T operator*()
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
T operator[](int)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
const ZeroIterator<T>& operator ++()
|
||
{
|
||
return *this;
|
||
}
|
||
|
||
ZeroIterator<T> operator ++(int)
|
||
{
|
||
return *this;
|
||
}
|
||
|
||
ZeroIterator<T>& operator+=(int)
|
||
{
|
||
return *this;
|
||
}
|
||
|
||
};
|
||
|
||
}
|
||
|
||
#endif //OPENCV_FLANN_DIST_H_
|