mirror of
https://github.com/opencv/opencv.git
synced 2024-12-02 16:00:17 +08:00
609 lines
17 KiB
C
609 lines
17 KiB
C
/* dsytf2.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* Subroutine */ int dsytf2_(char *uplo, integer *n, doublereal *a, integer *
|
|
lda, integer *ipiv, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
doublereal d__1, d__2, d__3;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
integer i__, j, k;
|
|
doublereal t, r1, d11, d12, d21, d22;
|
|
integer kk, kp;
|
|
doublereal wk, wkm1, wkp1;
|
|
integer imax, jmax;
|
|
extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *);
|
|
doublereal alpha;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
integer kstep;
|
|
logical upper;
|
|
doublereal absakk;
|
|
extern integer idamax_(integer *, doublereal *, integer *);
|
|
extern logical disnan_(doublereal *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
doublereal colmax, rowmax;
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DSYTF2 computes the factorization of a real symmetric matrix A using */
|
|
/* the Bunch-Kaufman diagonal pivoting method: */
|
|
|
|
/* A = U*D*U' or A = L*D*L' */
|
|
|
|
/* where U (or L) is a product of permutation and unit upper (lower) */
|
|
/* triangular matrices, U' is the transpose of U, and D is symmetric and */
|
|
/* block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
|
|
|
|
/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
/* Specifies whether the upper or lower triangular part of the */
|
|
/* symmetric matrix A is stored: */
|
|
/* = 'U': Upper triangular */
|
|
/* = 'L': Lower triangular */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
|
/* n-by-n upper triangular part of A contains the upper */
|
|
/* triangular part of the matrix A, and the strictly lower */
|
|
/* triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* leading n-by-n lower triangular part of A contains the lower */
|
|
/* triangular part of the matrix A, and the strictly upper */
|
|
/* triangular part of A is not referenced. */
|
|
|
|
/* On exit, the block diagonal matrix D and the multipliers used */
|
|
/* to obtain the factor U or L (see below for further details). */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
|
|
|
/* IPIV (output) INTEGER array, dimension (N) */
|
|
/* Details of the interchanges and the block structure of D. */
|
|
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
|
|
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
|
|
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
|
|
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
|
|
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
|
|
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
|
|
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -k, the k-th argument had an illegal value */
|
|
/* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
|
|
/* has been completed, but the block diagonal matrix D is */
|
|
/* exactly singular, and division by zero will occur if it */
|
|
/* is used to solve a system of equations. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* 09-29-06 - patch from */
|
|
/* Bobby Cheng, MathWorks */
|
|
|
|
/* Replace l.204 and l.372 */
|
|
/* IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
|
|
/* by */
|
|
/* IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */
|
|
|
|
/* 01-01-96 - Based on modifications by */
|
|
/* J. Lewis, Boeing Computer Services Company */
|
|
/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
|
|
/* 1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
|
|
/* Company */
|
|
|
|
/* If UPLO = 'U', then A = U*D*U', where */
|
|
/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
|
|
/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
|
|
/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
|
|
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
|
|
/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
|
|
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
|
|
|
|
/* ( I v 0 ) k-s */
|
|
/* U(k) = ( 0 I 0 ) s */
|
|
/* ( 0 0 I ) n-k */
|
|
/* k-s s n-k */
|
|
|
|
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
|
|
/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
|
|
/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
|
|
|
|
/* If UPLO = 'L', then A = L*D*L', where */
|
|
/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
|
|
/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
|
|
/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
|
|
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
|
|
/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
|
|
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
|
|
|
|
/* ( I 0 0 ) k-1 */
|
|
/* L(k) = ( 0 I 0 ) s */
|
|
/* ( 0 v I ) n-k-s+1 */
|
|
/* k-1 s n-k-s+1 */
|
|
|
|
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
|
|
/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
|
|
/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--ipiv;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSYTF2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize ALPHA for use in choosing pivot block size. */
|
|
|
|
alpha = (sqrt(17.) + 1.) / 8.;
|
|
|
|
if (upper) {
|
|
|
|
/* Factorize A as U*D*U' using the upper triangle of A */
|
|
|
|
/* K is the main loop index, decreasing from N to 1 in steps of */
|
|
/* 1 or 2 */
|
|
|
|
k = *n;
|
|
L10:
|
|
|
|
/* If K < 1, exit from loop */
|
|
|
|
if (k < 1) {
|
|
goto L70;
|
|
}
|
|
kstep = 1;
|
|
|
|
/* Determine rows and columns to be interchanged and whether */
|
|
/* a 1-by-1 or 2-by-2 pivot block will be used */
|
|
|
|
absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
|
|
|
|
/* IMAX is the row-index of the largest off-diagonal element in */
|
|
/* column K, and COLMAX is its absolute value */
|
|
|
|
if (k > 1) {
|
|
i__1 = k - 1;
|
|
imax = idamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
|
|
colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
|
|
} else {
|
|
colmax = 0.;
|
|
}
|
|
|
|
if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
|
|
|
|
/* Column K is zero or contains a NaN: set INFO and continue */
|
|
|
|
if (*info == 0) {
|
|
*info = k;
|
|
}
|
|
kp = k;
|
|
} else {
|
|
if (absakk >= alpha * colmax) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else {
|
|
|
|
/* JMAX is the column-index of the largest off-diagonal */
|
|
/* element in row IMAX, and ROWMAX is its absolute value */
|
|
|
|
i__1 = k - imax;
|
|
jmax = imax + idamax_(&i__1, &a[imax + (imax + 1) * a_dim1],
|
|
lda);
|
|
rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
|
|
if (imax > 1) {
|
|
i__1 = imax - 1;
|
|
jmax = idamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
|
|
/* Computing MAX */
|
|
d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1],
|
|
abs(d__1));
|
|
rowmax = max(d__2,d__3);
|
|
}
|
|
|
|
if (absakk >= alpha * colmax * (colmax / rowmax)) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
|
|
alpha * rowmax) {
|
|
|
|
/* interchange rows and columns K and IMAX, use 1-by-1 */
|
|
/* pivot block */
|
|
|
|
kp = imax;
|
|
} else {
|
|
|
|
/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
|
|
/* pivot block */
|
|
|
|
kp = imax;
|
|
kstep = 2;
|
|
}
|
|
}
|
|
|
|
kk = k - kstep + 1;
|
|
if (kp != kk) {
|
|
|
|
/* Interchange rows and columns KK and KP in the leading */
|
|
/* submatrix A(1:k,1:k) */
|
|
|
|
i__1 = kp - 1;
|
|
dswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
|
|
&c__1);
|
|
i__1 = kk - kp - 1;
|
|
dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
|
|
1) * a_dim1], lda);
|
|
t = a[kk + kk * a_dim1];
|
|
a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
|
|
a[kp + kp * a_dim1] = t;
|
|
if (kstep == 2) {
|
|
t = a[k - 1 + k * a_dim1];
|
|
a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
|
|
a[kp + k * a_dim1] = t;
|
|
}
|
|
}
|
|
|
|
/* Update the leading submatrix */
|
|
|
|
if (kstep == 1) {
|
|
|
|
/* 1-by-1 pivot block D(k): column k now holds */
|
|
|
|
/* W(k) = U(k)*D(k) */
|
|
|
|
/* where U(k) is the k-th column of U */
|
|
|
|
/* Perform a rank-1 update of A(1:k-1,1:k-1) as */
|
|
|
|
/* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
|
|
|
|
r1 = 1. / a[k + k * a_dim1];
|
|
i__1 = k - 1;
|
|
d__1 = -r1;
|
|
dsyr_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &a[
|
|
a_offset], lda);
|
|
|
|
/* Store U(k) in column k */
|
|
|
|
i__1 = k - 1;
|
|
dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
|
|
} else {
|
|
|
|
/* 2-by-2 pivot block D(k): columns k and k-1 now hold */
|
|
|
|
/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
|
|
|
|
/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
|
|
/* of U */
|
|
|
|
/* Perform a rank-2 update of A(1:k-2,1:k-2) as */
|
|
|
|
/* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
|
|
/* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
|
|
|
|
if (k > 2) {
|
|
|
|
d12 = a[k - 1 + k * a_dim1];
|
|
d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
|
|
d11 = a[k + k * a_dim1] / d12;
|
|
t = 1. / (d11 * d22 - 1.);
|
|
d12 = t / d12;
|
|
|
|
for (j = k - 2; j >= 1; --j) {
|
|
wkm1 = d12 * (d11 * a[j + (k - 1) * a_dim1] - a[j + k
|
|
* a_dim1]);
|
|
wk = d12 * (d22 * a[j + k * a_dim1] - a[j + (k - 1) *
|
|
a_dim1]);
|
|
for (i__ = j; i__ >= 1; --i__) {
|
|
a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
|
|
+ k * a_dim1] * wk - a[i__ + (k - 1) *
|
|
a_dim1] * wkm1;
|
|
/* L20: */
|
|
}
|
|
a[j + k * a_dim1] = wk;
|
|
a[j + (k - 1) * a_dim1] = wkm1;
|
|
/* L30: */
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* Store details of the interchanges in IPIV */
|
|
|
|
if (kstep == 1) {
|
|
ipiv[k] = kp;
|
|
} else {
|
|
ipiv[k] = -kp;
|
|
ipiv[k - 1] = -kp;
|
|
}
|
|
|
|
/* Decrease K and return to the start of the main loop */
|
|
|
|
k -= kstep;
|
|
goto L10;
|
|
|
|
} else {
|
|
|
|
/* Factorize A as L*D*L' using the lower triangle of A */
|
|
|
|
/* K is the main loop index, increasing from 1 to N in steps of */
|
|
/* 1 or 2 */
|
|
|
|
k = 1;
|
|
L40:
|
|
|
|
/* If K > N, exit from loop */
|
|
|
|
if (k > *n) {
|
|
goto L70;
|
|
}
|
|
kstep = 1;
|
|
|
|
/* Determine rows and columns to be interchanged and whether */
|
|
/* a 1-by-1 or 2-by-2 pivot block will be used */
|
|
|
|
absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
|
|
|
|
/* IMAX is the row-index of the largest off-diagonal element in */
|
|
/* column K, and COLMAX is its absolute value */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
imax = k + idamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
|
|
colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
|
|
} else {
|
|
colmax = 0.;
|
|
}
|
|
|
|
if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
|
|
|
|
/* Column K is zero or contains a NaN: set INFO and continue */
|
|
|
|
if (*info == 0) {
|
|
*info = k;
|
|
}
|
|
kp = k;
|
|
} else {
|
|
if (absakk >= alpha * colmax) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else {
|
|
|
|
/* JMAX is the column-index of the largest off-diagonal */
|
|
/* element in row IMAX, and ROWMAX is its absolute value */
|
|
|
|
i__1 = imax - k;
|
|
jmax = k - 1 + idamax_(&i__1, &a[imax + k * a_dim1], lda);
|
|
rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
|
|
if (imax < *n) {
|
|
i__1 = *n - imax;
|
|
jmax = imax + idamax_(&i__1, &a[imax + 1 + imax * a_dim1],
|
|
&c__1);
|
|
/* Computing MAX */
|
|
d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1],
|
|
abs(d__1));
|
|
rowmax = max(d__2,d__3);
|
|
}
|
|
|
|
if (absakk >= alpha * colmax * (colmax / rowmax)) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
|
|
alpha * rowmax) {
|
|
|
|
/* interchange rows and columns K and IMAX, use 1-by-1 */
|
|
/* pivot block */
|
|
|
|
kp = imax;
|
|
} else {
|
|
|
|
/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
|
|
/* pivot block */
|
|
|
|
kp = imax;
|
|
kstep = 2;
|
|
}
|
|
}
|
|
|
|
kk = k + kstep - 1;
|
|
if (kp != kk) {
|
|
|
|
/* Interchange rows and columns KK and KP in the trailing */
|
|
/* submatrix A(k:n,k:n) */
|
|
|
|
if (kp < *n) {
|
|
i__1 = *n - kp;
|
|
dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
|
|
+ kp * a_dim1], &c__1);
|
|
}
|
|
i__1 = kp - kk - 1;
|
|
dswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
|
|
1) * a_dim1], lda);
|
|
t = a[kk + kk * a_dim1];
|
|
a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
|
|
a[kp + kp * a_dim1] = t;
|
|
if (kstep == 2) {
|
|
t = a[k + 1 + k * a_dim1];
|
|
a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
|
|
a[kp + k * a_dim1] = t;
|
|
}
|
|
}
|
|
|
|
/* Update the trailing submatrix */
|
|
|
|
if (kstep == 1) {
|
|
|
|
/* 1-by-1 pivot block D(k): column k now holds */
|
|
|
|
/* W(k) = L(k)*D(k) */
|
|
|
|
/* where L(k) is the k-th column of L */
|
|
|
|
if (k < *n) {
|
|
|
|
/* Perform a rank-1 update of A(k+1:n,k+1:n) as */
|
|
|
|
/* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
|
|
|
|
d11 = 1. / a[k + k * a_dim1];
|
|
i__1 = *n - k;
|
|
d__1 = -d11;
|
|
dsyr_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &c__1, &
|
|
a[k + 1 + (k + 1) * a_dim1], lda);
|
|
|
|
/* Store L(k) in column K */
|
|
|
|
i__1 = *n - k;
|
|
dscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
|
|
}
|
|
} else {
|
|
|
|
/* 2-by-2 pivot block D(k) */
|
|
|
|
if (k < *n - 1) {
|
|
|
|
/* Perform a rank-2 update of A(k+2:n,k+2:n) as */
|
|
|
|
/* A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))' */
|
|
|
|
/* where L(k) and L(k+1) are the k-th and (k+1)-th */
|
|
/* columns of L */
|
|
|
|
d21 = a[k + 1 + k * a_dim1];
|
|
d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
|
|
d22 = a[k + k * a_dim1] / d21;
|
|
t = 1. / (d11 * d22 - 1.);
|
|
d21 = t / d21;
|
|
|
|
i__1 = *n;
|
|
for (j = k + 2; j <= i__1; ++j) {
|
|
|
|
wk = d21 * (d11 * a[j + k * a_dim1] - a[j + (k + 1) *
|
|
a_dim1]);
|
|
wkp1 = d21 * (d22 * a[j + (k + 1) * a_dim1] - a[j + k
|
|
* a_dim1]);
|
|
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
|
|
+ k * a_dim1] * wk - a[i__ + (k + 1) *
|
|
a_dim1] * wkp1;
|
|
/* L50: */
|
|
}
|
|
|
|
a[j + k * a_dim1] = wk;
|
|
a[j + (k + 1) * a_dim1] = wkp1;
|
|
|
|
/* L60: */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Store details of the interchanges in IPIV */
|
|
|
|
if (kstep == 1) {
|
|
ipiv[k] = kp;
|
|
} else {
|
|
ipiv[k] = -kp;
|
|
ipiv[k + 1] = -kp;
|
|
}
|
|
|
|
/* Increase K and return to the start of the main loop */
|
|
|
|
k += kstep;
|
|
goto L40;
|
|
|
|
}
|
|
|
|
L70:
|
|
|
|
return 0;
|
|
|
|
/* End of DSYTF2 */
|
|
|
|
} /* dsytf2_ */
|