mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 18:39:12 +08:00
581 lines
21 KiB
C++
581 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
|
|
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace cv::superres;
|
|
using namespace cv::superres::detail;
|
|
|
|
#if !defined(HAVE_CUDA) || !defined(HAVE_OPENCV_GPU)
|
|
|
|
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_GPU()
|
|
{
|
|
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<SuperResolution>();
|
|
}
|
|
|
|
#else // HAVE_CUDA
|
|
|
|
namespace btv_l1_device
|
|
{
|
|
void buildMotionMaps(PtrStepSzf forwardMotionX, PtrStepSzf forwardMotionY,
|
|
PtrStepSzf backwardMotionX, PtrStepSzf bacwardMotionY,
|
|
PtrStepSzf forwardMapX, PtrStepSzf forwardMapY,
|
|
PtrStepSzf backwardMapX, PtrStepSzf backwardMapY);
|
|
|
|
template <int cn>
|
|
void upscale(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream);
|
|
|
|
void diffSign(PtrStepSzf src1, PtrStepSzf src2, PtrStepSzf dst, cudaStream_t stream);
|
|
|
|
void loadBtvWeights(const float* weights, size_t count);
|
|
template <int cn> void calcBtvRegularization(PtrStepSzb src, PtrStepSzb dst, int ksize);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
void calcRelativeMotions(const vector<pair<GpuMat, GpuMat> >& forwardMotions, const vector<pair<GpuMat, GpuMat> >& backwardMotions,
|
|
vector<pair<GpuMat, GpuMat> >& relForwardMotions, vector<pair<GpuMat, GpuMat> >& relBackwardMotions,
|
|
int baseIdx, Size size)
|
|
{
|
|
const int count = static_cast<int>(forwardMotions.size());
|
|
|
|
relForwardMotions.resize(count);
|
|
relForwardMotions[baseIdx].first.create(size, CV_32FC1);
|
|
relForwardMotions[baseIdx].first.setTo(Scalar::all(0));
|
|
relForwardMotions[baseIdx].second.create(size, CV_32FC1);
|
|
relForwardMotions[baseIdx].second.setTo(Scalar::all(0));
|
|
|
|
relBackwardMotions.resize(count);
|
|
relBackwardMotions[baseIdx].first.create(size, CV_32FC1);
|
|
relBackwardMotions[baseIdx].first.setTo(Scalar::all(0));
|
|
relBackwardMotions[baseIdx].second.create(size, CV_32FC1);
|
|
relBackwardMotions[baseIdx].second.setTo(Scalar::all(0));
|
|
|
|
for (int i = baseIdx - 1; i >= 0; --i)
|
|
{
|
|
gpu::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first);
|
|
gpu::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second);
|
|
|
|
gpu::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first);
|
|
gpu::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second);
|
|
}
|
|
|
|
for (int i = baseIdx + 1; i < count; ++i)
|
|
{
|
|
gpu::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first);
|
|
gpu::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second);
|
|
|
|
gpu::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first);
|
|
gpu::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second);
|
|
}
|
|
}
|
|
|
|
void upscaleMotions(const vector<pair<GpuMat, GpuMat> >& lowResMotions, vector<pair<GpuMat, GpuMat> >& highResMotions, int scale)
|
|
{
|
|
highResMotions.resize(lowResMotions.size());
|
|
|
|
for (size_t i = 0; i < lowResMotions.size(); ++i)
|
|
{
|
|
gpu::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_CUBIC);
|
|
gpu::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_CUBIC);
|
|
|
|
gpu::multiply(highResMotions[i].first, Scalar::all(scale), highResMotions[i].first);
|
|
gpu::multiply(highResMotions[i].second, Scalar::all(scale), highResMotions[i].second);
|
|
}
|
|
}
|
|
|
|
void buildMotionMaps(const pair<GpuMat, GpuMat>& forwardMotion, const pair<GpuMat, GpuMat>& backwardMotion,
|
|
pair<GpuMat, GpuMat>& forwardMap, pair<GpuMat, GpuMat>& backwardMap)
|
|
{
|
|
forwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
|
|
forwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
|
|
|
|
backwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
|
|
backwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
|
|
|
|
btv_l1_device::buildMotionMaps(forwardMotion.first, forwardMotion.second,
|
|
backwardMotion.first, backwardMotion.second,
|
|
forwardMap.first, forwardMap.second,
|
|
backwardMap.first, backwardMap.second);
|
|
}
|
|
|
|
void upscale(const GpuMat& src, GpuMat& dst, int scale, Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
0, btv_l1_device::upscale<1>, 0, btv_l1_device::upscale<3>, btv_l1_device::upscale<4>
|
|
};
|
|
|
|
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
|
|
|
|
dst.create(src.rows * scale, src.cols * scale, src.type());
|
|
dst.setTo(Scalar::all(0));
|
|
|
|
const func_t func = funcs[src.channels()];
|
|
|
|
func(src, dst, scale, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void diffSign(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
|
|
{
|
|
dst.create(src1.size(), src1.type());
|
|
|
|
btv_l1_device::diffSign(src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights)
|
|
{
|
|
const size_t size = btvKernelSize * btvKernelSize;
|
|
|
|
btvWeights.resize(size);
|
|
|
|
const int ksize = (btvKernelSize - 1) / 2;
|
|
const float alpha_f = static_cast<float>(alpha);
|
|
|
|
for (int m = 0, ind = 0; m <= ksize; ++m)
|
|
{
|
|
for (int l = ksize; l + m >= 0; --l, ++ind)
|
|
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l));
|
|
}
|
|
|
|
btv_l1_device::loadBtvWeights(&btvWeights[0], size);
|
|
}
|
|
|
|
void calcBtvRegularization(const GpuMat& src, GpuMat& dst, int btvKernelSize)
|
|
{
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int ksize);
|
|
static const func_t funcs[] =
|
|
{
|
|
0,
|
|
btv_l1_device::calcBtvRegularization<1>,
|
|
0,
|
|
btv_l1_device::calcBtvRegularization<3>,
|
|
btv_l1_device::calcBtvRegularization<4>
|
|
};
|
|
|
|
dst.create(src.size(), src.type());
|
|
dst.setTo(Scalar::all(0));
|
|
|
|
const int ksize = (btvKernelSize - 1) / 2;
|
|
|
|
funcs[src.channels()](src, dst, ksize);
|
|
}
|
|
|
|
class BTVL1_GPU_Base
|
|
{
|
|
public:
|
|
BTVL1_GPU_Base();
|
|
|
|
void process(const vector<GpuMat>& src, GpuMat& dst,
|
|
const vector<pair<GpuMat, GpuMat> >& forwardMotions, const vector<pair<GpuMat, GpuMat> >& backwardMotions,
|
|
int baseIdx);
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
int scale_;
|
|
int iterations_;
|
|
double lambda_;
|
|
double tau_;
|
|
double alpha_;
|
|
int btvKernelSize_;
|
|
int blurKernelSize_;
|
|
double blurSigma_;
|
|
Ptr<DenseOpticalFlowExt> opticalFlow_;
|
|
|
|
private:
|
|
vector<Ptr<FilterEngine_GPU> > filters_;
|
|
int curBlurKernelSize_;
|
|
double curBlurSigma_;
|
|
int curSrcType_;
|
|
|
|
vector<float> btvWeights_;
|
|
int curBtvKernelSize_;
|
|
double curAlpha_;
|
|
|
|
vector<pair<GpuMat, GpuMat> > lowResForwardMotions_;
|
|
vector<pair<GpuMat, GpuMat> > lowResBackwardMotions_;
|
|
|
|
vector<pair<GpuMat, GpuMat> > highResForwardMotions_;
|
|
vector<pair<GpuMat, GpuMat> > highResBackwardMotions_;
|
|
|
|
vector<pair<GpuMat, GpuMat> > forwardMaps_;
|
|
vector<pair<GpuMat, GpuMat> > backwardMaps_;
|
|
|
|
GpuMat highRes_;
|
|
|
|
vector<Stream> streams_;
|
|
vector<GpuMat> diffTerms_;
|
|
vector<GpuMat> a_, b_, c_;
|
|
GpuMat regTerm_;
|
|
};
|
|
|
|
BTVL1_GPU_Base::BTVL1_GPU_Base()
|
|
{
|
|
scale_ = 4;
|
|
iterations_ = 180;
|
|
lambda_ = 0.03;
|
|
tau_ = 1.3;
|
|
alpha_ = 0.7;
|
|
btvKernelSize_ = 7;
|
|
blurKernelSize_ = 5;
|
|
blurSigma_ = 0.0;
|
|
opticalFlow_ = createOptFlow_Farneback_GPU();
|
|
|
|
curBlurKernelSize_ = -1;
|
|
curBlurSigma_ = -1.0;
|
|
curSrcType_ = -1;
|
|
|
|
curBtvKernelSize_ = -1;
|
|
curAlpha_ = -1.0;
|
|
}
|
|
|
|
void BTVL1_GPU_Base::process(const vector<GpuMat>& src, GpuMat& dst,
|
|
const vector<pair<GpuMat, GpuMat> >& forwardMotions, const vector<pair<GpuMat, GpuMat> >& backwardMotions,
|
|
int baseIdx)
|
|
{
|
|
CV_Assert( scale_ > 1 );
|
|
CV_Assert( iterations_ > 0 );
|
|
CV_Assert( tau_ > 0.0 );
|
|
CV_Assert( alpha_ > 0.0 );
|
|
CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 );
|
|
CV_Assert( blurKernelSize_ > 0 );
|
|
CV_Assert( blurSigma_ >= 0.0 );
|
|
|
|
// update blur filter and btv weights
|
|
|
|
if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
|
|
{
|
|
filters_.resize(src.size());
|
|
for (size_t i = 0; i < src.size(); ++i)
|
|
filters_[i] = createGaussianFilter_GPU(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_);
|
|
curBlurKernelSize_ = blurKernelSize_;
|
|
curBlurSigma_ = blurSigma_;
|
|
curSrcType_ = src[0].type();
|
|
}
|
|
|
|
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
|
|
{
|
|
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
|
|
curBtvKernelSize_ = btvKernelSize_;
|
|
curAlpha_ = alpha_;
|
|
}
|
|
|
|
// calc motions between input frames
|
|
|
|
calcRelativeMotions(forwardMotions, backwardMotions, lowResForwardMotions_, lowResBackwardMotions_, baseIdx, src[0].size());
|
|
|
|
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_);
|
|
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_);
|
|
|
|
forwardMaps_.resize(highResForwardMotions_.size());
|
|
backwardMaps_.resize(highResForwardMotions_.size());
|
|
for (size_t i = 0; i < highResForwardMotions_.size(); ++i)
|
|
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]);
|
|
|
|
// initial estimation
|
|
|
|
const Size lowResSize = src[0].size();
|
|
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);
|
|
|
|
gpu::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_CUBIC);
|
|
|
|
// iterations
|
|
|
|
streams_.resize(src.size());
|
|
diffTerms_.resize(src.size());
|
|
a_.resize(src.size());
|
|
b_.resize(src.size());
|
|
c_.resize(src.size());
|
|
|
|
for (int i = 0; i < iterations_; ++i)
|
|
{
|
|
for (size_t k = 0; k < src.size(); ++k)
|
|
{
|
|
// a = M * Ih
|
|
gpu::remap(highRes_, a_[k], backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_REPLICATE, Scalar(), streams_[k]);
|
|
// b = HM * Ih
|
|
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1), streams_[k]);
|
|
// c = DHF * Ih
|
|
gpu::resize(b_[k], c_[k], lowResSize, 0, 0, INTER_NEAREST, streams_[k]);
|
|
|
|
diffSign(src[k], c_[k], c_[k], streams_[k]);
|
|
|
|
// a = Dt * diff
|
|
upscale(c_[k], a_[k], scale_, streams_[k]);
|
|
// b = HtDt * diff
|
|
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1), streams_[k]);
|
|
// diffTerm = MtHtDt * diff
|
|
gpu::remap(b_[k], diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_REPLICATE, Scalar(), streams_[k]);
|
|
}
|
|
|
|
if (lambda_ > 0)
|
|
{
|
|
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_);
|
|
gpu::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_);
|
|
}
|
|
|
|
for (size_t k = 0; k < src.size(); ++k)
|
|
{
|
|
streams_[k].waitForCompletion();
|
|
gpu::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_);
|
|
}
|
|
}
|
|
|
|
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_);
|
|
highRes_(inner).copyTo(dst);
|
|
}
|
|
|
|
void BTVL1_GPU_Base::collectGarbage()
|
|
{
|
|
filters_.clear();
|
|
|
|
lowResForwardMotions_.clear();
|
|
lowResBackwardMotions_.clear();
|
|
|
|
highResForwardMotions_.clear();
|
|
highResBackwardMotions_.clear();
|
|
|
|
forwardMaps_.clear();
|
|
backwardMaps_.clear();
|
|
|
|
highRes_.release();
|
|
|
|
diffTerms_.clear();
|
|
a_.clear();
|
|
b_.clear();
|
|
c_.clear();
|
|
regTerm_.release();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
class BTVL1_GPU : public SuperResolution, private BTVL1_GPU_Base
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
BTVL1_GPU();
|
|
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
void initImpl(Ptr<FrameSource>& frameSource);
|
|
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output);
|
|
|
|
private:
|
|
int temporalAreaRadius_;
|
|
|
|
void readNextFrame(Ptr<FrameSource>& frameSource);
|
|
void processFrame(int idx);
|
|
|
|
GpuMat curFrame_;
|
|
GpuMat prevFrame_;
|
|
|
|
vector<GpuMat> frames_;
|
|
vector<pair<GpuMat, GpuMat> > forwardMotions_;
|
|
vector<pair<GpuMat, GpuMat> > backwardMotions_;
|
|
vector<GpuMat> outputs_;
|
|
|
|
int storePos_;
|
|
int procPos_;
|
|
int outPos_;
|
|
|
|
vector<GpuMat> srcFrames_;
|
|
vector<pair<GpuMat, GpuMat> > srcForwardMotions_;
|
|
vector<pair<GpuMat, GpuMat> > srcBackwardMotions_;
|
|
GpuMat finalOutput_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(BTVL1_GPU, "SuperResolution.BTVL1_GPU",
|
|
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor.");
|
|
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count.");
|
|
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method.");
|
|
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term.");
|
|
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV.");
|
|
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter.");
|
|
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size.");
|
|
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma.");
|
|
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area.");
|
|
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."));
|
|
|
|
BTVL1_GPU::BTVL1_GPU()
|
|
{
|
|
temporalAreaRadius_ = 4;
|
|
}
|
|
|
|
void BTVL1_GPU::collectGarbage()
|
|
{
|
|
curFrame_.release();
|
|
prevFrame_.release();
|
|
|
|
frames_.clear();
|
|
forwardMotions_.clear();
|
|
backwardMotions_.clear();
|
|
outputs_.clear();
|
|
|
|
srcFrames_.clear();
|
|
srcForwardMotions_.clear();
|
|
srcBackwardMotions_.clear();
|
|
finalOutput_.release();
|
|
|
|
SuperResolution::collectGarbage();
|
|
BTVL1_GPU_Base::collectGarbage();
|
|
}
|
|
|
|
void BTVL1_GPU::initImpl(Ptr<FrameSource>& frameSource)
|
|
{
|
|
const int cacheSize = 2 * temporalAreaRadius_ + 1;
|
|
|
|
frames_.resize(cacheSize);
|
|
forwardMotions_.resize(cacheSize);
|
|
backwardMotions_.resize(cacheSize);
|
|
outputs_.resize(cacheSize);
|
|
|
|
storePos_ = -1;
|
|
|
|
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t)
|
|
readNextFrame(frameSource);
|
|
|
|
for (int i = 0; i <= temporalAreaRadius_; ++i)
|
|
processFrame(i);
|
|
|
|
procPos_ = temporalAreaRadius_;
|
|
outPos_ = -1;
|
|
}
|
|
|
|
void BTVL1_GPU::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
|
|
{
|
|
if (outPos_ >= storePos_)
|
|
{
|
|
_output.release();
|
|
return;
|
|
}
|
|
|
|
readNextFrame(frameSource);
|
|
|
|
if (procPos_ < storePos_)
|
|
{
|
|
++procPos_;
|
|
processFrame(procPos_);
|
|
}
|
|
|
|
++outPos_;
|
|
const GpuMat& curOutput = at(outPos_, outputs_);
|
|
|
|
if (_output.kind() == _InputArray::GPU_MAT)
|
|
curOutput.convertTo(_output.getGpuMatRef(), CV_8U);
|
|
else
|
|
{
|
|
curOutput.convertTo(finalOutput_, CV_8U);
|
|
arrCopy(finalOutput_, _output);
|
|
}
|
|
}
|
|
|
|
void BTVL1_GPU::readNextFrame(Ptr<FrameSource>& frameSource)
|
|
{
|
|
frameSource->nextFrame(curFrame_);
|
|
|
|
if (curFrame_.empty())
|
|
return;
|
|
|
|
++storePos_;
|
|
curFrame_.convertTo(at(storePos_, frames_), CV_32F);
|
|
|
|
if (storePos_ > 0)
|
|
{
|
|
pair<GpuMat, GpuMat>& forwardMotion = at(storePos_ - 1, forwardMotions_);
|
|
pair<GpuMat, GpuMat>& backwardMotion = at(storePos_, backwardMotions_);
|
|
|
|
opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second);
|
|
opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second);
|
|
}
|
|
|
|
curFrame_.copyTo(prevFrame_);
|
|
}
|
|
|
|
void BTVL1_GPU::processFrame(int idx)
|
|
{
|
|
const int startIdx = max(idx - temporalAreaRadius_, 0);
|
|
const int procIdx = idx;
|
|
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_);
|
|
|
|
const int count = endIdx - startIdx + 1;
|
|
|
|
srcFrames_.resize(count);
|
|
srcForwardMotions_.resize(count);
|
|
srcBackwardMotions_.resize(count);
|
|
|
|
int baseIdx = -1;
|
|
|
|
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k)
|
|
{
|
|
if (i == procIdx)
|
|
baseIdx = k;
|
|
|
|
srcFrames_[k] = at(i, frames_);
|
|
|
|
if (i < endIdx)
|
|
srcForwardMotions_[k] = at(i, forwardMotions_);
|
|
if (i > startIdx)
|
|
srcBackwardMotions_[k] = at(i, backwardMotions_);
|
|
}
|
|
|
|
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx);
|
|
}
|
|
}
|
|
|
|
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_GPU()
|
|
{
|
|
return new BTVL1_GPU;
|
|
}
|
|
|
|
#endif // HAVE_CUDA
|