opencv/modules/gpu/src/arithm.cpp
2011-05-31 08:31:10 +00:00

367 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
void cv::gpu::transpose(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::flip(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::exp(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::log(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::magnitude(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::magnitudeSqr(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool, Stream&) { throw_nogpu(); }
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, Stream&) { throw_nogpu(); }
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
////////////////////////////////////////////////////////////////////////
// transpose
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst, Stream& s)
{
CV_Assert(src.elemSize() == 1 || src.elemSize() == 4 || src.elemSize() == 8);
dst.create( src.cols, src.rows, src.type() );
cudaStream_t stream = StreamAccessor::getStream(s);
if (src.elemSize() == 1)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz) );
}
else if (src.elemSize() == 4)
{
NppStStreamHandler h(stream);
NcvSize32u sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiStTranspose_32u_C1R(const_cast<Ncv32u*>(src.ptr<Ncv32u>()), src.step,
dst.ptr<Ncv32u>(), dst.step, sz) );
}
else // if (src.elemSize() == 8)
{
NppStStreamHandler h(stream);
NcvSize32u sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiStTranspose_64u_C1R(const_cast<Ncv64u*>(src.ptr<Ncv64u>()), src.step,
dst.ptr<Ncv64u>(), dst.step, sz) );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// flip
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode, Stream& s)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
dst.create( src.size(), src.type() );
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiMirror_8u_C1R(src.ptr<Npp8u>(), src.step,
dst.ptr<Npp8u>(), dst.step, sz,
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
}
else
{
nppSafeCall( nppiMirror_8u_C4R(src.ptr<Npp8u>(), src.step,
dst.ptr<Npp8u>(), dst.step, sz,
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// LUT
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& s)
{
class LevelsInit
{
public:
Npp32s pLevels[256];
const Npp32s* pLevels3[3];
int nValues3[3];
LevelsInit()
{
nValues3[0] = nValues3[1] = nValues3[2] = 256;
for (int i = 0; i < 256; ++i)
pLevels[i] = i;
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
}
};
static LevelsInit lvls;
int cn = src.channels();
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
CV_Assert(lut.depth() == CV_8U && (lut.channels() == 1 || lut.channels() == cn) && lut.rows * lut.cols == 256 && lut.isContinuous());
dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn));
NppiSize sz;
sz.height = src.rows;
sz.width = src.cols;
Mat nppLut;
lut.convertTo(nppLut, CV_32S);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz, nppLut.ptr<Npp32s>(), lvls.pLevels, 256) );
}
else
{
Mat nppLut3[3];
const Npp32s* pValues3[3];
if (nppLut.channels() == 1)
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
else
{
cv::split(nppLut, nppLut3);
pValues3[0] = nppLut3[0].ptr<Npp32s>();
pValues3[1] = nppLut3[1].ptr<Npp32s>();
pValues3[2] = nppLut3[2].ptr<Npp32s>();
}
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz, pValues3, lvls.pLevels3, lvls.nValues3) );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// exp
void cv::gpu::exp(const GpuMat& src, GpuMat& dst, Stream& s)
{
CV_Assert(src.type() == CV_32FC1);
dst.create(src.size(), src.type());
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( nppiExp_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// log
void cv::gpu::log(const GpuMat& src, GpuMat& dst, Stream& s)
{
CV_Assert(src.type() == CV_32FC1);
dst.create(src.size(), src.type());
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( nppiLn_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// NPP magnitide
namespace
{
typedef NppStatus (*nppMagnitude_t)(const Npp32fc* pSrc, int nSrcStep, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);
inline void npp_magnitude(const GpuMat& src, GpuMat& dst, nppMagnitude_t func, cudaStream_t stream)
{
CV_Assert(src.type() == CV_32FC2);
dst.create(src.size(), CV_32FC1);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp32fc>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst, Stream& stream)
{
::npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream));
}
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst, Stream& stream)
{
::npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// Polar <-> Cart
namespace cv { namespace gpu { namespace mathfunc
{
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream);
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream);
}}}
namespace
{
inline void cartToPolar_caller(const GpuMat& x, const GpuMat& y, GpuMat* mag, bool magSqr, GpuMat* angle, bool angleInDegrees, cudaStream_t stream)
{
CV_DbgAssert(x.size() == y.size() && x.type() == y.type());
CV_Assert(x.depth() == CV_32F);
if (mag)
mag->create(x.size(), x.type());
if (angle)
angle->create(x.size(), x.type());
GpuMat x1cn = x.reshape(1);
GpuMat y1cn = y.reshape(1);
GpuMat mag1cn = mag ? mag->reshape(1) : GpuMat();
GpuMat angle1cn = angle ? angle->reshape(1) : GpuMat();
mathfunc::cartToPolar_gpu(x1cn, y1cn, mag1cn, magSqr, angle1cn, angleInDegrees, stream);
}
inline void polarToCart_caller(const GpuMat& mag, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, cudaStream_t stream)
{
CV_DbgAssert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type());
CV_Assert(mag.depth() == CV_32F);
x.create(mag.size(), mag.type());
y.create(mag.size(), mag.type());
GpuMat mag1cn = mag.reshape(1);
GpuMat angle1cn = angle.reshape(1);
GpuMat x1cn = x.reshape(1);
GpuMat y1cn = y.reshape(1);
mathfunc::polarToCart_gpu(mag1cn, angle1cn, x1cn, y1cn, angleInDegrees, stream);
}
}
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst, Stream& stream)
{
::cartToPolar_caller(x, y, &dst, false, 0, false, StreamAccessor::getStream(stream));
}
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst, Stream& stream)
{
::cartToPolar_caller(x, y, &dst, true, 0, false, StreamAccessor::getStream(stream));
}
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, Stream& stream)
{
::cartToPolar_caller(x, y, 0, false, &angle, angleInDegrees, StreamAccessor::getStream(stream));
}
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees, Stream& stream)
{
::cartToPolar_caller(x, y, &mag, false, &angle, angleInDegrees, StreamAccessor::getStream(stream));
}
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, Stream& stream)
{
::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */