mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 20:23:36 +08:00
146 lines
4.7 KiB
C++
146 lines
4.7 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <fstream>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include <iomanip> // for cout << setw()
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
using namespace gpu;
|
|
|
|
class CV_GpuMatOpCopyToTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_GpuMatOpCopyToTest()
|
|
{
|
|
rows = 234;
|
|
cols = 123;
|
|
}
|
|
~CV_GpuMatOpCopyToTest() {}
|
|
|
|
protected:
|
|
void run(int);
|
|
template <typename T>
|
|
void print_mat(const T & mat, const std::string & name) const;
|
|
bool compare_matrix(cv::Mat & cpumat, gpu::GpuMat & gpumat);
|
|
|
|
private:
|
|
int rows;
|
|
int cols;
|
|
};
|
|
|
|
template<typename T>
|
|
void CV_GpuMatOpCopyToTest::print_mat(const T & mat, const std::string & name) const { cv::imshow(name, mat); }
|
|
|
|
bool CV_GpuMatOpCopyToTest::compare_matrix(cv::Mat & cpumat, gpu::GpuMat & gpumat)
|
|
{
|
|
Mat cmat(cpumat.size(), cpumat.type(), Scalar::all(0));
|
|
GpuMat gmat(cmat);
|
|
|
|
Mat cpumask(cpumat.size(), CV_8U);
|
|
|
|
cv::RNG& rng = ts->get_rng();
|
|
|
|
rng.fill(cpumask, RNG::NORMAL, Scalar::all(0), Scalar::all(127));
|
|
|
|
threshold(cpumask, cpumask, 0, 127, THRESH_BINARY);
|
|
|
|
GpuMat gpumask(cpumask);
|
|
|
|
//int64 time = getTickCount();
|
|
cpumat.copyTo(cmat, cpumask);
|
|
//int64 time1 = getTickCount();
|
|
gpumat.copyTo(gmat, gpumask);
|
|
//int64 time2 = getTickCount();
|
|
|
|
//std::cout << "\ntime cpu: " << std::fixed << std::setprecision(12) << 1.0 / double((time1 - time) / (double)getTickFrequency());
|
|
//std::cout << "\ntime gpu: " << std::fixed << std::setprecision(12) << 1.0 / double((time2 - time1) / (double)getTickFrequency());
|
|
//std::cout << "\n";
|
|
|
|
#ifdef PRINT_MATRIX
|
|
print_mat(cmat, "cpu mat");
|
|
print_mat(gmat, "gpu mat");
|
|
print_mat(cpumask, "cpu mask");
|
|
print_mat(gpumask, "gpu mask");
|
|
cv::waitKey(0);
|
|
#endif
|
|
|
|
double ret = norm(cmat, gmat);
|
|
|
|
if (ret < 1.0)
|
|
return true;
|
|
else
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void CV_GpuMatOpCopyToTest::run( int /* start_from */)
|
|
{
|
|
bool is_test_good = true;
|
|
|
|
int lastType = CV_32F;
|
|
|
|
if (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))
|
|
lastType = CV_64F;
|
|
|
|
for (int i = 0 ; i <= lastType; i++)
|
|
{
|
|
Mat cpumat(rows, cols, i);
|
|
cpumat.setTo(Scalar::all(127));
|
|
|
|
GpuMat gpumat(cpumat);
|
|
|
|
is_test_good &= compare_matrix(cpumat, gpumat);
|
|
}
|
|
|
|
if (is_test_good == true)
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
else
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
|
}
|
|
|
|
TEST(GpuMat_copyTo, accuracy) { CV_GpuMatOpCopyToTest test; test.safe_run(); }
|